CC BY-NC-ND 4.0 · Rev Bras Ortop (Sao Paulo) 2019; 54(02): 190-197
DOI: 10.1016/j.rbo.2017.11.008
Original Article | Artigo Original
Sociedade Brasileira de Ortopedia e Traumatologia. Published by Thieme Revnter Publicações Ltda Rio de Janeiro, Brazil

Biomechanical Evidence on Anterior Cruciate Ligament Reconstruction[*]

Artikel in mehreren Sprachen: português | English
António Completo
1   Departamento de Engenharia Mecânica, Universidade de Aveiro, Aveiro, Portugal
,
José Carlos Noronha
2   Hospital da Ordem da Trindade, Porto, Portugal
,
Carlos Oliveira
1   Departamento de Engenharia Mecânica, Universidade de Aveiro, Aveiro, Portugal
,
Fernando Fonseca
3   Serviço de Ortopedia, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
4   Faculdade de Medicina, Universidade de Coimbra, Coimbra, Portugal
› Institutsangaben
Weitere Informationen

Publikationsverlauf

06. September 2017

28. November 2017

Publikationsdatum:
17. April 2019 (online)

Abstract

Objective Anterior cruciate ligament (ACL) reconstruction is recommended in athletes with high physical demands. Several techniques are used in reconstruction; however, the most relevant question still is the best biomechanical positioning for the graft. The present study aimed to analyze the biomechanical effect of the position of bone tunnels on load distribution and joint kinetics, as well as the medium-term functional outcomes after ACL reconstruction.

Methods A biomechanical study using a finite element model of the original knee (without anterior cruciate ligament rupture) and reconstruction of the ACL (neoACL) was performed in four combinations of bone tunnel positions (central femoral-central tibial, anterior femoral-central tibial, posterosuperior femoral-anterior tibial, and central femoral-anterior tibial) using the same type of graft. Each neo-ACL model was compared with the original knee model regarding cartilaginous contact pressure, femoral and meniscal rotation and translation, and ligamentous deformation.

Results No neo-ACL model was able to fully replicate the original knee model. When the femoral tunnel was posteriorly positioned, cartilage pressures were 25% lower, and the mobility of the meniscus was 12 to 30% higher compared with the original knee model. When the femoral tunnel was in the anterior position, internal rotation was 50% lower than in the original knee model.

Conclusion Results show that the femoral tunnel farther from the central position appears to be more suitable for a distinct behavior regarding the intact joint. The most anterior position increases rotational instability.

* Work developed at the Departamento de Engenharia Mecânica of the, Universidade de Aveiro, Aveiro, Portugal.


 
  • References

  • 1 Carnes J, Stannus O, Cicuttini F, Ding C, Jones G. Knee cartilage defects in a sample of older adults: natural history, clinical significance and factors influencing change over 2.9 years. Osteoarthritis Cartilage 2012; 20 (12) 1541-1547
  • 2 Completo A, Fonseca F. Fundamentos de biomecânica musculoesquelética e ortopédica. Porto: Publindustria; 2011
  • 3 Erdemir A, Sibole S. A three-dimensional finite element representation of the knee joint. 2010. . In: User's Guide. Version 1.0.0
  • 4 Sibole S, Bennetts C, Maas S. Open knee: a 3 d finite element representation of the knee joint. In: 34th Annual Meeting of the American Society of Biomechanics, Providence, RI from Wednesday, August 18, 2010
  • 5 Noronha JC. Ligamento cruzado anterior [tese]. Porto: Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto; 2000
  • 6 Peña E, Calvo B, Martínez MA, Doblaré M. A three-dimensional finite element analysis of the combined behavior of ligaments and menisci in the healthy human knee joint. J Biomech 2006; 39 (09) 1686-1701
  • 7 Rho JY, Ashman RB, Turner CH. Young's modulus of trabecular and cortical bone material: ultrasonic and microtensile measurements. J Biomech 1993; 26 (02) 111-119
  • 8 Donahue TL, Hull ML, Rashid MM, Jacobs CR. A finite element model of the human knee joint for the study of tibio-femoral contact. J Biomech Eng 2002; 124 (03) 273-280
  • 9 Butler DL, Guan Y, Kay MD, Cummings JF, Feder SM, Levy MS. Location-dependent variations in the material properties of the anterior cruciate ligament. J Biomech 1992; 25 (05) 511-518
  • 10 Harner CD, Xerogeanes JW, Livesay GA, Carlin GJ, Smith BA, Kusayama T. , et al. The human posterior cruciate ligament complex: an interdisciplinary study. Ligament morphology and biomechanical evaluation. Am J Sports Med 1995; 23 (06) 736-745
  • 11 Quapp KM, Weiss JA. Material characterization of human medial collateral ligament. J Biomech Eng 1998; 120 (06) 757-763
  • 12 Shani RH, Umpierez E, Nasert M, Hiza EA, Xerogeanes J. Biomechanical comparison of quadriceps and patellar tendon grafts in anterior cruciate ligament reconstruction. Arthroscopy 2016; 32 (01) 71-75
  • 13 Bergmann G, Bender A, Graichen F, Dymke J, Rohlmann A, Trepczynski A. , et al. Standardized loads acting in knee implants. PLoS One 2014; 9 (01) e86035
  • 14 Morrison JB. The mechanics of the knee joint in relation to normal walking. J Biomech 1970; 3 (01) 51-61
  • 15 Van Rossom S, Smith CR, Zevenbergen L, Thelen DG, Vanwanseele B, Van Assche D. , et al. Knee Cartilage Thickness, T1ρ and T2 Relaxation Time Are Related to Articular Cartilage Loading in Healthy Adults. PLoS One 2017; 12 (01) e0170002
  • 16 Liu F, Kozanek M, Hosseini A, Van de Velde SK, Gill TJ, Rubash HE. , et al. In vivo tibiofemoral cartilage deformation during the stance phase of gait. J Biomech 2010; 43 (04) 658-665
  • 17 Vedi V, Williams A, Tennant SJ, Spouse E, Hunt DM, Gedroyc WM. Meniscal movement. An in-vivo study using dynamic MRI. J Bone Joint Surg Br 1999; 81 (01) 37-41
  • 18 Matsumoto H, Seedhom BB, Suda Y, Otani T, Fujikawa K. Axis location of tibial rotation and its change with flexion angle. Clin Orthop Relat Res 2000; (371) 178-182
  • 19 Khalfayan EE, Sharkey PF, Alexander AH, Bruckner JD, Bynum EB. The relationship between tunnel placement and clinical results after anterior cruciate ligament reconstruction. Am J Sports Med 1996; 24 (03) 335-341
  • 20 Shelbourne KD, Gray T. Minimum 10-year results after anterior cruciate ligament reconstruction: how the loss of normal knee motion compounds other factors related to the development of osteoarthritis after surgery. Am J Sports Med 2009; 37 (03) 471-480
  • 21 Shelbourne KD, Benner RW, Gray T. Results of after anterior cruciate ligament reconstruction with patellar tendon autografts: objective factors associated with thw development of osteoarthritis at 20 to 33 years after surgery. Am J Sports Med 2017; 45 (12) 2730-2738