RSS-Feed abonnieren
DOI: 10.1055/a-0590-5223
Integration of Biochemometrics and Molecular Networking to Identify Antimicrobials in Angelica keiskei
Publikationsverlauf
received 27. November 2017
revised 03. März 2018
accepted 08. März 2018
Publikationsdatum:
23. März 2018 (online)
Abstract
Botanical medicines have been utilized for centuries, but it remains challenging to identify bioactive constituents from complex botanical extracts. Bioassay-guided fractionation is often biased toward abundant or easily isolatable compounds. To comprehensively evaluate active botanical mixtures, methods that allow for the prioritization of active compounds are needed. To this end, a method integrating bioassay-guided fractionation, biochemometric selectivity ratio analysis, and molecular networking was devised and applied to Angelica keiskei to comprehensively evaluate its antimicrobial activity against Staphylococcus aureus. This approach enabled the identification of putative active constituents early in the fractionation process and provided structural information for these compounds. A subset of chalcone analogs were prioritized for isolation, yielding 4-hydroxyderricin (1, minimal inhibitory concentration [MIC] ≤ 4.6 µM, IC50 = 2.0 µM), xanthoangelol (2, MIC ≤ 4.0 µM, IC50 = 2.3) and xanthoangelol K (4, IC50 = 168 µM). This approach allowed for the identification of a low-abundance compound (xanthoangelol K) that has not been previously reported to possess antimicrobial activity and facilitated a more comprehensive understanding of the compounds responsible for A. keiskei’s antimicrobial activity.
Key words
biochemometrics - chalcones - selectivity ratio - molecular networking - mass spectrometry - Angelica keiskei - ApiaceaeSupporting Information
- Supporting Information
The isolation scheme, workflow, NMR spectra, and dose response curves are available as Supporting Information.
-
References
- 1 Sharma SB, Gupta R. Drug development from natural resource: a systematic approach. Mini Rev Med Chem 2015; 15: 52-57
- 2 Kinghorn AD, Fong HHS, Farnsworth NR, Mehta RG, Moon RC, Moriarty RM, Pezzuto JM. Cancer chemopreventative agents discovered by activity-guided fractionation: a review. Curr Org Chem 1998; 2: 597-612
- 3 Kellogg JJ, Todd DA, Egan JM, Raja HA, Oberlies NH, Kvalheim OM, Cech NB. Biochemometrics for natural products research: comparison of data analysis approaches and application to identification of bioactive compounds. J Nat Prod 2016; 79: 376-386
- 4 Inui T, Wang Y, Pro SM, Franzblau SG, Pauli GF. Unbiased evaluation of bioactive secondary metabolites in complex matrices. Fitoterapia 2012; 83: 1218-1225
- 5 Roemer T, Xu D, Singh SB, Parish CA, Harris G, Wang J, Davies JE, Bills GF. Confronting the challenges of natural product-based antifungal discovery. Chem Biol 2011; 18: 148-164
- 6 Newman DJ, Cragg GM. Natural products as sources of new drugs from 1981 to 2014. J Nat Prod 2016; 79: 629-661
- 7 Cowan MM. Plant products as antimicrobial agents. Clin Microbiol Rev 1999; 12: 564-582
- 8 Kingston DG. Modern natural products drug discovery and its relevance to biodiversity conservation. J Nat Prod 2011; 74: 496-511
- 9 Gurjar MS, Ali S, Akhtar M, Sing KS. Efficacy of plant extracts in plant disease management. Agricultural Sciences 2012; 3: 425-433
- 10 Savoia D. Plant-derived antimicrobial compounds: alternatives to antibiotics. Future Microbiol 2012; 7: 979-990
- 11 Toyama K, Chokki S. Ashitaba-Hachijojima Islandʼs reiso in the early modern period. Kobe Health Welfare University Anal 2014; 15: 37-44
- 12 Caesar LK, Cech NB. A review of the medicinal uses and pharmacology of ashitaba. Planta Med 2016; 82: 1236-1245
- 13 Inamori Y, Baba K, Tsujibo H, Taniguchi M, Nakata K, Kozawa M. Antibacterial activity of two chalcones, xanthoangelol and 4-hydroxyderricin, isolated from the root of Angelica keiskei KOIDZUMI. Chem Pharm Bull (Tokyo) 1991; 39: 1604-1605
- 14 Sugamoto K, Matsusita Y, Matsui K, Kurogi C, Matsui T. Synthesis and antibacterial activity of chalcones bearing prenyl or geranyl groups from Angelica keiskei . Tetrahedron 2011; 67: 5346-5359
- 15 Wu C, Du C, Gubbens J, Choi YH, van Wezel GP. Metabolomics-driven discovery of a prenylated isatin antibiotic produced by Streptomyces species MBT28. J Nat Prod 2015; 78: 2355-2363
- 16 Sidebottom AM, Johnson AR, Karty JA, Trader DJ, Carlson EE. Integrated metabolomics approach facilitates discovery of an unpredicted natural product suite from Streptomyces coelicolor M145. ACS Chem Biol 2013; 8: 2009-2016
- 17 Cox DG, Oh J, Keasling A, Colson KL, Hamann MT. The utility of metabolomics in natural product and biomarker characterization. Biochim Biophys Acta 2014; 1840: 3460-3474
- 18 Rajalahti T, Arneberg R, Berven FS, Myhr KM, Ulvik RJ, Kvalheim OM. Biomarker discovery in mass spectral profiles by means of selectivity ratio plot. Chemom Intell Lab Syst 2009; 95: 35-48
- 19 Yang JY, Sanchez LM, Rath CM, Liu X, Boudreau PD, Bruns N, Glukhov E, Wodtke A, de Felicio R, Fenner A, Wong WR, Linington RG, Zhang L, Debonsi HM, Gerwick WH, Dorrestein PC. Molecular networking as a dereplication strategy. J Nat Prod 2013; 76: 1686-1699
- 20 Boles BR, Thoendel M, Roth AJ, Horswill AR. Identification of genes involved in polysaccharide-independent Staphylococcus aureus biofilm formation. PLoS One 2010; 5: e10146
- 21 Kim JH, Son YK, Kim GH, Hwang KH. Xanthoangelol and 4-hydroxyderricin are the major active principles of the inhibitory activities against monoamine oxidases on Angelica keiskei K. Biomol Ther (Seoul) 2013; 21: 234-240
- 22 Baba K, Nakata K, Taniguchi M, Kido T, Kozawa M. Chalcones from Angelica keiskei. . Phytochemistry 1990; 29: 3907-3910
- 23 Li J, Gao L, Meng F, Tang C, Zhang R, Li J, Luo C, Li J, Zhao W. PTP1B inhibitors from stems of Angelica keiskei (Ashitaba). Bioorg and Med Chem Lett 2015; 25: 2028-2032
- 24 Nowakowska Z. A review of anti-infective and anti-inflammatory chalcones. Eur J Med Chem 2007; 42: 125-127
- 25 Kawabata K, Sawada K, Ikeda K, Fukuda I, Kawasaki K, Yamamoto N, Ashida H. Prenylated chalcones 4-hydroxyderricin and xanthoangelol stimulate glucose uptake in skeletal muscle cells by inducing GLUT4 translocation. Mol Nutr Food Res 2011; 55: 467-475
- 26 Kaatz GW, Seo SM. Inducible NorA-mediated multidrug resistance in Staphylococcus aureus . Antimicrob Agents Chemother 1995; 39: 2650-2655
- 27 Patel JB, Cockerill III FR, Bradford PA, Eliopoulos GM, Hindler JA, Jenkins SG, Lewis II JS, Limbago B, Miller LA, Nicolau DP, Powell M, Swenson JM, Traczewski MM, Turnidge JD, Weinstein MP, Zimmer BL. M07-A10: Methods for Dilution antimicrobial Susceptibility Tests for Bacteria that grow Aerobically. 10th ed. Wayne, PA: Clinical Laboratory Standards Institute; 2015
- 28 Pluskal T, Castillo S, Villar-Briones A, Oresic M. MZMine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinf 2010; 11: 395
- 29 Kvalheim OM, Chan H, Benzie IFF, Szeto T, Tzang AH, Mok DI, Chau F. Chromatographic profiling and multivariate analysis for screening and quantifying the contributions from individual components to the bioactive signature in natural products. Chemom Intell Lab Syst 2011; 107: 98-105
- 30 Kvalheim OM, Brackstad F, Liang YZ. Preprocessing of analytical profiles in the presence of homoscedastic or heteroscedastic noise. Anal Chem 1994; 66: 43-51
- 31 ProteoWizard. Available at. http://proteowizard.sourceforge.net/%23 Accessed May 23, 2017
- 32 Frank AM, Savitski MM, Nielsen ML, Zubarev RA, Pevzner PA. De novo peptide sequencing and identification with precision mass spectrometry. J Proteome Res 2007; 6: 114-123
- 33 Ahannon P, Markiel A, Ozier O, Balinga NS, Want JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated modules of biomolecular interaction networks. Genome Res 2003; 13: 2498-2504