Subscribe to RSS
DOI: 10.1055/a-0595-6520
Mikroalgen in der Humanernährung – eine sinnvolle Zukunftsperspektive?
Microalgae in Human Nutrition: Reasonable Future Prospects?Publication History
Publication Date:
19 April 2018 (online)
Zusammenfassung
Unter Mikroalgen fasst man mikroskopisch kleine, Fotosynthese betreibende Organismen zusammen, die in aquatischen Umgebungen vorkommen. Sie enthalten eine Vielzahl von Nährstoffen, darunter auch Proteine, Kohlenhydrate, Carotinoide, Vitamine, Mineralstoffe und Fettsäuren. In Lebensmitteln verarbeitet findet man heutzutage vor allem die Grünalge Chlorella und das Cyanobakterium Arthrospira.
Die steigende Weltbevölkerung bei gleichzeitig begrenztem Ackerland wird in den nächsten Jahren zu einer noch stärkeren Nahrungsmittelknappheit führen. Aus diesem Grund sind Mikroalgen in den vergangenen Jahren in den Fokus der Wissenschaft gerückt. Neben einem guten Nährstoffprofil sind sie nämlich nicht auf landwirtschaftliche Nutzflächen angewiesen, sondern können in Ponds oder Fotobioreaktoren gezüchtet werden.
Allerdings sind Mikroalgen bisher noch wenig in der menschlichen Ernährung verbreitet. Dies könnte zum einen daran liegen, dass bislang nur wenige der über 200 000 Arten für den menschlichen Konsum zugelassen sind. Des Weiteren spielen vor allem die Geschmacksveränderungen, die mit einem erhöhten Mikroalgenanteil einhergehen, und die hohen Produktionskosten eine große Rolle.
Nichtsdestotrotz weisen Mikroalgen eine Vielzahl von bioaktiven Komponenten auf, die potenzielle gesundheitliche Vorteile besitzen. Neben immunmodulatorischen und antioxidativen Effekten weisen sie präbiotische, antivirale und entgiftende Wirkungen auf. Außerdem sind Mikroalgen eine vegane Quelle für Omega-3-Fettsäuren, was zum Schutz der Ressource Fisch beitragen könnte.
Mikroalgen besitzen ein großes Potenzial als nachhaltiges Nahrungsmittel, das über Makro- und Mikronährstoffe verfügt, sowie als gesundheitsfördernde Nutraceuticals, die einen positiven Mehrwert für die menschliche Gesundheit liefern können. Dennoch steckt die Forschung zu ihnen noch in den Kinderschuhen und die nahe Zukunft wird Aufschluss darüber geben, ob sie auch in Zukunft fester Bestandteil unserer Ernährung werden.
Abstract
Microalgae are microscopic small photosynthetic organisms found in aquatic environments. They contain a variety of nutrients, including proteins, carbohydrates, carotenoids, vitamins, minerals and fatty acids. Nowadays, especially the green algae Chlorella and the cyanobacterium Arthrospira are found in food.
The growing world population and limited farmland will lead to even greater food shortages in the next few years. For this reason, microalgae have been in the focus of science in recent years. In addition to a good nutrient profile, they are not dependent on agricultural land, but can be bred in ponds or photobioreactors.
However, microalgae are still poorly distributed in the human diet. This could be because so far only a few of the over 200,000 species are approved for human consumption. Furthermore, especially the taste changes, which are associated with an increased microalgae content, and the high production costs play a major role.
Nonetheless, microalgae contain a variety of bioactive components that have potential health benefits. In addition to immunomodulatory and anti-oxidative effects, they have prebiotic, anti-viral and detoxifying effects. In addition, microalgae are a vegan source of omega-3 fatty acids, which could help protect fish as a resource.
Microalgae have great potential as a sustainable food with macro and micronutrients, as well as health-promoting nutraceuticals that can provide positive added value to human health. However, research on them is still in its infancy and the near future will tell if they will continue to be an integral part of our diet in the future.
-
Literatur
- 1 Becker W. Microalgae in Human and Animal Nutrition. In: Richmond A. ed. Handbook of Microalgal Culture. Oxford, UK.: John Wiley & Sons, Ltd; 2004: 312-351
- 2 Godfray HCJ, Beddington JR, Crute IR. et al. Food security: The challenge of feeding 9 billion people. Science 2010; 5967: 812-818
- 3 Nestle. Good Das Magazin für Zukunftsfragen. 2015
- 4 Becker EW. Microalgae: Biotechnology and Microbiology. Cambridge University Press; 1994
- 5 Saleh AM, Hussein LA, Abdalla FE. et al. The nutritional quality of drum-dried algae produced in open door mass culture. Zeitschrift für Ernährungswiss 1985; 4: 256-263
- 6 Beyerinck MW. Culturversuche mit Zoochlorellen, Lichenengonidien und anderen niederen Algen. Botanische Zeitung 1890; 725-785
- 7 Shihira I, Krauss RW. Chlorella. Physiology and taxonomy of forty-one isolates. USA: University of Maryland; 1965
- 8 Krienitz L, Huss VAR, Bock C. Chlorella: 125 years of the green survivalist. Trends in Plant Science 2015; 2: 67-69
- 9 Kessler E, Huss VAR. Comparative physiology and biochemistry and taxonomic assignment of the Chlorella (Chlorophyceae) strains of the culture collection of the University of Texas at Austin. Phycol 1992; 4: 550-553
- 10 Becker EW. Micro-algae as a source of protein. Biotechnol Adv 2007; 2: 207-210
- 11 Davis DR. Some algae are potentially adequate sources of vitamin B-12 for vegans. J Nutr 1997; 2: 378
- 12 Ullman J, Ecke M. Chlorella vulgaris – pflanzliche Quelle für hochkonzentriertes und bioverfügbares Vitamin B12. OM & Ernährung 2011; 137: 1-4
- 13 Kumudha A, Selvakumar S, Dilshad P. et al. Methylcobalamin – a form of vitamin B12 identified and characterised in Chlorella vulgaris. Food Chem 2015; 170: 316-320
- 14 Mitsuda H, Nishikawa Y, Higuchi M. et al. Effect of the Breaking of Chlorella Cells on the Digestibility of Chlorella Protein. JJSFN 1977; 2: 93-98
- 15 Morita K, Ogata M, Hasegawa T. Chlorophyll derived from Chlorella inhibits dioxin absorption from the gastrointestinal tract and accelerates dioxin excretion in rats. Environ Health Perspect 2001; 3: 289-294
- 16 Wu L-C, Ho J-A, Shieh M-C. et al. Antioxidant and antiproliferative activities of Spirulina and Chlorella water extracts. J Agric Food Chem 2005; 10: 4207-4212
- 17 Wang H-M, Pan J-L, Chen C-Y. et al. Identification of anti-lung cancer extract from Chlorella vulgaris C-C by antioxidant property using supercritical carbon dioxide extraction. Process Biochem 2010; 12: 1865-1872
- 18 Uchikawa T, Maruyama I, Kumamoto S. et al. Chlorella suppresses methylmercury transfer to the fetus in pregnant mice. J Toxicol Sci 2011; 5: 675-680
- 19 Cha KH, Koo SY, Lee D-U. Antiproliferative effects of carotenoids extracted from Chlorella ellipsoidea and Chlorella vulgaris on human colon cancer cells. J Agric Food Chem 2008; 22: 10521-10526
- 20 Goiris K, Muylaert K, Fraeye I. et al. Antioxidant potential of microalgae in relation to their phenolic and carotenoid content. J of Applied Phycol 2012; 6: 1477-1486
- 21 Guzmán S, Gato A, Lamela M. et al. Anti-inflammatory and immunomodulatory activities of polysaccharide from Chlorella stigmatophora and Phaeodactylum tricornutum. Phytother Res 2003; 6: 665-670
- 22 Mizoguchi T, Takehara I, Masuzawa T. et al. Nutrigenomic studies of effects of Chlorella on subjects with high-risk factors for lifestyle-related disease. J Med Food 2008; 3: 395-404
- 23 Ryu NH, Lim Y, Park JE. et al. Impact of daily Chlorella consumption on serum lipid and carotenoid profiles in mildly hypercholesterolemic adults: A double-blinded, randomized, placebo-controlled study. Nutr J 2014; 13: 57
- 24 Merchant RE, Phillips TW, Udani J. Nutritional Supplementation with Chlorella pyrenoidosa Lowers Serum Methylmalonic Acid in Vegans and Vegetarians with a Suspected Vitamin B12 Deficiency. J Med Food 2015; 12: 1357-1362
- 25 Powell RC, Nevels EM, McDowell ME. Algae Feeding in Humans. J Nutr 1961; 1: 7-12
- 26 Rosello Sastre R, Posten C. Die vielfältige Anwendung von Mikroalgen als nachwachsende Rohstoffe. Chemie Ingenieur Technik 2010; 11: 1925-1939
- 27 Batello C, Marzat M, Toure AH. The future is an ancient lake. Rome: Food and Agriculture Organizations; 2004
- 28 Gustafson KR, Cardellina JH, Fuller RW. et al. AIDS-antiviral sulfolipids from cyanobacteria (blue-green algae). J Natl Cancer Inst 1989; 16: 1254-1258
- 29 Hudson BJ, Karis IG. The lipids of the alga Spirulina. J Sci Food Agric 1974; 7: 759-763
- 30 Pleonsil P, Soogarun S, Suwanwong Y. Anti-oxidant activity of holo- and apo-c-phycocyanin and their protective effects on human erythrocytes. Int J Biol Macromol 2013; 60: 393-398
- 31 Belay A, Ota Y, Miyakawa K. et al. Current knowledge on potential health benefits of Spirulina. J of App Phycol 1993; 2: 235-241
- 32 Cheong SH, Kim MY, Sok D-E. et al. Spirulina prevents atherosclerosis by reducing hypercholesterolemia in rabbits fed a high-cholesterol diet. J Nutr Sci Vitaminol (Tokyo) 2010; 1: 34-40
- 33 Halidou Doudou M, Degbey H, Daouda H. et al. Supplémentation en spiruline dans le cadre de la réhabilitation nutritionnelle: Revue systématique (The effect of spiruline during nutritional rehabilitation: systematic review). Rev Epidemiol Sante Publique 2008; 6: 425-431
- 34 Simpore J, Kabore F, Zongo F. et al. Nutrition rehabilitation of undernourished children utilizing Spiruline and Misola. Nutr J 2006; 5: 3
- 35 Ryckebosch E, Bruneel C, Muylaert K. et al. Microalgae as an alternative source of omega-3 long chain polyunsaturated fatty acids. Lipid Tec 2012; 6: 128-130
- 36 Hammond BG, Mayhew DA, Holson JF. et al. Safety assessment of DHA-rich microalgae from Schizochytrium sp. Regul Toxicol Pharmacol 2001; 2: 205-217
- 37 Schmitt D, Tran N, Peach J. et al. Toxicologic evaluations of DHA-rich algal oil in rats: Developmental toxicity study and 3-month dietary toxicity study with an in utero exposure phase. Food Chem Toxicol 2012; 11: 4149-4157
- 38 Hadley KB, Bauer J, Milgram NW. The oil-rich alga Schizochytrium sp. as a dietary source of docosahexaenoic acid improves shape discrimination learning associated with visual processing in a canine model of senescence. Prostaglandins Leukot Essent Fatty Acids 2017; 118: 10-18
- 39 Simopoulos AP. The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp Biol Med (Maywood) 2008; 6: 674-688
- 40 Boussiba S, Vonshak A. Astaxanthin Accumulation in the Green Alga Haematococcus pluvialis1. Plant and Cell Phys 1991; 7: 1077-1082
- 41 Kurashige M, Okimasu E, Inoue M. et al. Inhibition of oxidative injury of biological membranes by astaxanthin. Physiol Chem Phys Med NMR 1990; 1: 27-38
- 42 Mortensen A, Skibsted LH, Sampson J. et al. Comparative mechanisms and rates of free radical scavenging by carotenoid antioxidants. FEBS Lett 1997; 1–2: 91-97
- 43 Papas AM. Antioxidant status, diet, nutrition, and health. Boca Raton: CRC Press; 1999
- 44 Guerin M, Huntley ME, Olaizola M. Haematococcus astaxanthin: Applications for human health and nutrition. Trends in Biotech 2003; 5: 210-216
- 45 Fassett RG, Coombes JS. Astaxanthin, oxidative stress, inflammation and cardiovascular disease. Future Cardiol 2009; 4: 333-342
- 46 Parrish CC, Wangersky PJ. Particulate and dissolved lipid classes in cultures of Phaeodactylum tricornutum grown in cage culture turbidostats with a range of nitrogen supply rates. Mar Ecol Prog Ser 1987; 35: 119-128
- 47 Wu H, Li T, Wang G. et al. A comparative analysis of fatty acid composition and fucoxanthin content in six Phaeodactylum tricornutum strains from diff erent origins. Chinese J of Oceanology and Limnology 2016; 2: 391-398
- 48 Andrianasolo EH, Haramaty L, Vardi A. et al. Apoptosis-inducing galactolipids from a cultured marine diatom, Phaeodactylum tricornutum. J Nat Prod 2008; 7: 1197-1201
- 49 Sachindra NM, Sato E, Maeda H. et al. Radical scavenging and singlet oxygen quenching activity of marine carotenoid fucoxanthin and its metabolites. J Agric Food Chem 2007; 21: 8516-8522
- 50 Neumann U, Louis S, Gille A. et al. Anti-inflammatory effects of Phaeodactylum tricornutum extracts on human blood mononuclear cells and murine macrophages. J of Appl Phycol 2018; DOI: https://doi.org/10.1007/s10811-017-1352-7.
- 51 Neumann U, Derwenskus F, Gille A, Louis S, Schmid-Staiger U, Briviba K, Bischoff SC. Bioavailability and safety of nutrients from the microalgae Chlorella vulgaris, Nannochloropsis oceanica and Phaeodactylum tricornutum in C57BL/6 mice. Nutrients; under review
- 52 Lubián LM, Montero O, Moreno-Garrido I. et al. Nannochloropsis (Eustigmatophyceae) as source of commercially valuable pigments. J of Appl Phycol 2000; 3: 249-255
- 53 Maadane A, Merghouba N, Ainane T. et al. Antioxidant activity of some Moroccan marine microalgae: Pufa profiles, carotenoids and phenolic content. J of Biotech 2015; 215: 13-19
- 54 Brown MR, Jeffrey SW, Volkman JK. et al. Nutritional properties of microalgae for mariculture. Aquaculture 1997; 1–4: 315-331
- 55 Adarme-Vega TC, Lim DKY, Timmins M. et al. Microalgal biofactories: A promising approach towards sustainable omega-3 fatty acid production. Microb Cell Fact 2012; 11: 96
- 56 Martins DA, Custódio L, Barreira L. et al. Alternative sources of n-3 long-chain polyunsaturated fatty acids in marine microalgae. Mar Drugs 2013; 7: 2259-2281
- 57 Pangestuti R, Kim S-K. Biological activities and health benefit effects of natural pigments derived from marine algae. J of Funct Foods 2011; 4: 255-266
- 58 Gille A, Trautmann A, Posten C. et al. Bioaccessibility of carotenoids from Chlorella vulgaris and Chlamydomonas reinhardtii. Int J Food Sci Nutr 2015; 5: 507-513
- 59 Raja R, Hemaiswarya S, Rengasamy R. Exploitation of Dunaliella for beta-carotene production. Appl Microbiol Biotechnol 2007; 3: 517-523
- 60 Ben-Amotz A, Edelstein S, Avron M. Use of the beta-carotene rich alga Dunaliella bardawil as a source of retinol. Br Poult Sci 1986; 4: 613-619
- 61 Tokuşoglu O, Ünal MK. Biomass Nutrient Profiles of Three Microalgae: Spirulina platensis, Chlorella vulgaris, and Isochrisis galbana. J Food Science 2003; 4: 1144-1148
- 62 Doucha J, Livansky K, Kotrbacek V. et al. Production of Chlorella biomass enriched by selenium and its use in animal nutrition: A review. Appl Microbiol Biotechnol 2009; 6: 1001-1008
- 63 Manor ML, Kim J, Derksen TJ. et al. Defatted microalgae serve as a dual dietary source of highly bioavailable iron and protein in an anemic pig model. Algal Research 2017; 26: 409-414
- 64 Wilde EW, Benemann JR. Bioremoval of heavy metals by the use of microalgae. Biotechnol Adv 1993; 4: 781-812
- 65 Brown MR, Mular M, Miller I. et al. The vitamin content of microalgae used in aquaculture. J of Appl Phycol 1999; 3: 247-255
- 66 Müssig K, Thamer C, Bares R. et al. Iodine-induced thyrotoxicosis after ingestion of kelp-containing tea. J Gen Intern Med 2006; 6: C11-4
- 67 Yeh TS, Hung NH, Lin TC. Analysis of iodine content in seaweed by GC-ECD and estimation of iodine intake. J of Food and Drug Anal 2014; 2: 189-196
- 68 Clifford AJ, Riumallo JA, Young VR. et al. Effect of Oral Purines on Serum and Urinary Uric Acid of Normal, Hyperuricemic and Gouty Humans. J Nutr 1976; 3: 428-434
- 69 Wang H, Zhang W, Chen L. et al. The contamination and control of biological pollutants in mass cultivation of microalgae. Bioresour Technol 2013; 45: 745-750
- 70 Daranas AH, Norte M, Fernández JJ. Toxic marine microalgae. Toxicon 2001; 8: 1101-1132
- 71 Santi Delia A, Caruso G, Melcarne L, Caruso G, Parisi S, Laganà P. Biological Toxins from Marine and Freshwater Microalgae. In: Laganà P. ed. Microbial toxins and related contamination in the food industry. Cham: Springer; 2015: 13-55
- 72 Patocka J. The toxins of Cyanobacteria. Acta Medica (Hradec Kralove) 2001; 2: 69-75
- 73 Pugh N, Ross SA, ElSohly HN. et al. Isolation of three high molecular weight polysaccharide preparations with potent immunostimulatory activity from Spirulina platensis, aphanizomenon flos-aquae and Chlorella pyrenoidosa. Planta Med 2001; 8: 737-742
- 74 Benedetti S, Benvenuti F, Pagliarani S. et al. Antioxidant properties of a novel phycocyanin extract from the blue-green alga Aphanizomenon flos-aquae. Life Sci 2004; 19: 2353-2362
- 75 Eldridge SLC, Wood TM, Echols KR. Spatial and temporal dynamics of cyanotoxins and their relation to other water quality variables in Upper Klamath Lake, Oregon, 2007–09. Scientific Invest Rep 2012; 5069: 1-44
- 76 Snyder DT, Morace JL. Nitrogen and phosphorus loading from drained wetlands adjacent to Upper Klamath and Agency lakes, Oregon. Water-Resources Invest Rep 1997; 4059: 1-73
- 77 Carmichael WW, Drapeau C, Anderson DM. Harvesting of Aphanizomenon flos-aquae Ralfs ex Born. & Flah. var. flos-aquae (Cyanobacteria) from Klamath Lake for human dietary use. J of Appl Phycol 2000; 6: 585-595
- 78 Saker ML, Jungblut A-D, Neilan BA. et al. Detection of microcystin synthetase genes in health food supplements containing the freshwater cyanobacterium Aphanizomenon flos-aquae. Toxicon 2005; 5: 555-562
- 79 Mahmood NA, Carmichael WW. Paralytic shellfish poisons produced by the freshwater cyanobacterium Aphanizomenon flos-aquae NH-5. Toxicon 1986; 2: 175-186
- 80 Vichi S, Lavorini P, Funari E. et al. Contamination by Microcystis and microcystins of blue-green algae food supplements (BGAS) on the Italian market and possible risk for the exposed population. Food Chem Toxicol 2012; 12: 4493-4499