Subscribe to RSS
DOI: 10.1055/a-0608-4870
Advantages of Molecular Weight Identification during Native MS Screening
Publication History
received 03 October 2017
revised 01 April 2018
accepted 11 April 2018
Publication Date:
09 May 2018 (online)
![](https://www.thieme-connect.de/media/plantamedica/201816/lookinside/thumbnails/10-1055-a-0608-4870_pmb0894-1.jpg)
Abstract
Native mass spectrometry detection of ligand-protein complexes allowed rapid detection of natural product binders of apo and calcium-bound S100A4 (a member of the metal binding protein S100 family), T cell/transmembrane, immunoglobulin (Ig), and mucin protein 3, and T cell immunoreceptor with Ig and ITIM (immunoreceptor tyrosine-based inhibitory motif) domains precursor protein from extracts and fractions. Based on molecular weight common hits were detected binding to all four proteins. Seven common hits were identified as apigenin 6-C-β-D-glucoside 8-C-α-L-arabinoside, sweroside, 4′,5-dihydroxy-7-methoxyflavanone-6-C-rutinoside, loganin acid, 6-C-glucosylnaringenin, biochanin A 7-O-rutinoside and quercetin 3-O-rutinoside. Mass guided isolation and NMR identification of hits confirmed the mass accuracy of the ligand in the ligand-protein MS complexes. Thus, molecular weight ID from ligand-protein complexes by electrospray ionization Fourier transform mass spectrometry allowed rapid dereplication. Native mass spectrometry using electrospray ionization Fourier transform mass spectrometry is a tool for dereplication and metabolomics analysis.
Key words
dereplication - ligand-protein complex - metabolomics - molecular weight - native mass spectrometrySupporting Information
- Supporting Information
Hit detection and molecular weight determination of hits during native MS screening, the strategy for classification of the hits, detailed information of common hits and their biota sources, NMR spectra of the isolated common hits NP_358, NP_376, NP_434, NP_592, NP_564, NP_594, and NP_610, amino acid sequences of human S100A4 and TIGIT and mouse TIM3 proteins that were used for this project, determination of optimum screening concentrations of the proteins, gradient methods (timetable) for LLEF preparation, LC-LRMS and LC–HRMS analysis of extracts/fractions, optimum screening conditions of critical instrumental parameters, and the charge deconvolution method are available as Supporting Information.
-
References
- 1 Williams DH, Stone MJ, Hauck PR, Rahman SK. Why are secondary metabolites (natural products) biosynthesized?. J Nat Prod 1989; 52: 1189-1208
- 2 Kellenberger E, Hofmann A, Quinn RJ. Similar interactions of natural products with biosynthetic enzymes and therapeutic targets could explain why nature produces such a large proportion of existing drugs. Nat Prod Rep 2011; 28: 1483-1492
- 3 Marshall AG, Hendrickson CL, Jackson GS. Fourier transform ion cyclotron resonance mass spectrometry: a primer. Mass Spectrom Rev 1998; 17: 1-35
- 4 Pramanik BN, Bartner PL, Mirza UA, Liu YH, Ganguly AK. Electrospray ionization mass spectrometry for the study of non-covalent complexes: an emerging technology. J Mass Spectrom 1998; 33: 911-920
- 5 Banerjee S, Mazumdar S. Electrospray ionization mass spectrometry: a technique to access the information beyond the molecular weight of the analyte. Int J Anal Chem 2012; 2012: 282574
- 6 Camp D, Davis RA, Campitelli M, Ebdon J, Quinn RJ. Drug-like properties: guiding principles for the design of natural product libraries. J Nat Prod 2011; 75: 72-81
- 7 Camp D, Campitelli M, Carroll AR, Davis RA, Quinn RJ. Front-loading natural-product-screening libraries for log P: background, development, and implementation. Chem Biodiver 2013; 10: 524-537
- 8 Collins R, Ng T, Fong W, Wan C, Yeung H. Removal of polyphenolic compounds from aqueous plant extracts using polyamide minicolumns. IUBMB Life 1998; 45: 791-796
- 9 Fei F, Qu J, Zhang M, Li Y, Zhang S. S100A4 in cancer progression and metastasis: a systematic review. Oncotarget 2017; 8: 73219
- 10 DeKruyff RH, Bu X, Ballesteros A, Santiago C, Chim YL, Lee HH, Karisola P, Pichavant M, Kaplan GG, Umetsu DT, Freeman GJ, Casasnovas JM. T cell/transmembrane, Ig, and mucin-3 allelic variants differentially recognize phosphatidylserine and mediate phagocytosis of apoptotic cells. J Immunol 2010; 84: 1918-1930
- 11 Lee J, Phong B, Egloff AM, Kane LP. TIM polymorphisms – genetics and function. Genes Immun 2011; 12: 595-604
- 12 Bu X, Ballesteros A, Chim YL, Santiago C, Lee HH, Umetsu D, Casasnovas J, DeKruyff R, Freeman G. TIM-3 is a receptor for phosphatidylserine and allelic variants differentially mediate uptake of apoptotic cells. J Immunol 2010; 184: 130-141
- 13 Chiba S, Baghdadi M, Akiba H, Yoshiyama H, Kinoshita I, Dosaka-Akita H, Fujioka Y, Ohba Y, Gorman JV, Colgan JD, Hirashima M, Uede T, Takaoka A, Yagita H, Jinushi M. Tumor-infiltrating DCs suppress nucleic acid-mediated innate immune responses through interactions between the receptor TIM-3 and the alarmin HMGB1. Nat Immunol 2012; 13: 832-842
- 14 Wu J, Liu C, Qian S, Hou H. The expression of Tim-3 in peripheral blood of ovarian cancer. DNA Cell Biol 2013; 32: 648-653
- 15 Piao YR, Piao LZ, Zhu LH, Jin ZH, Dong XZ. Prognostic value of T cell immunoglobulin mucin-3 in prostate cancer. Asian Pac J Cancer Prev 2013; 14: 3897-3901
- 16 Gao X, Li C, Pan X, Li L, Fu J, Yao W. Expression and significance of Tim-3 on peripheral blood monocytes in patients with chronic hepatitis B. Chinese J Cell Mol Immunol 2013; 29: 739-743
- 17 Leitner J, Rieger A, Pickl WF, Zlabinger G, Grabmeier-Pfistershammer K, Steinberger P. TIM-3 does not act as a receptor for galectin-9. PLoS Pathog 2013; 9: e1003253
- 18 Yan J, Zhang Y, Zhang JP, Liang J, Li L, Zheng L. Tim-3 expression defines regulatory T cells in human tumors. PLoS One 2013; 8: e58006
- 19 Bai J, Li X, Tong D, Shi W, Song H, Li Q. T-cell immunoglobulin- and mucin-domain-containing molecule 3 gene polymorphisms and prognosis of non-small-cell lung cancer. Tumor Biol 2013; 34: 805-809
- 20 Roth CG, Garner K, Eyck ST, Boyiadzis M, Kane LP, Craig FE. TIM3 expression by leukemic and non-leukemic myeloblasts. Cytometry B Clin Cytom 2013; 84: 167-172
- 21 Lee MJ, Woo MY, Heo YM, Kim JS, Kwon MH, Kim K, Park S. The inhibition of the T-cell immunoglobulin and mucin domain 3 (Tim3) pathway enhances the efficacy of tumor vaccine. Biochem Biophys Res Commun 2010; 402: 88-93
- 22 Liu XG, Hou M, Liu Y. TIGIT, a novel therapeutic target for tumor immunotherapy. Immunol Invest 2017; 46: 172-182
- 23 Chen X, Lu PH, Liu L, Fang ZM, Duan W, Liu ZL, Wang CY, Zhou P, Yu XF, He WT. TIGIT negatively regulates inflammation by altering macrophage phenotype. Immunobiology 2016; 221: 48-55
- 24 Lozano E, Dominguez-Villar M, Kuchroo V, Hafler DA. The TIGIT/CD226 axis regulates human T cell function. J Immunol 2012; 188: 3869-3875
- 25 Gutzeit HO, Ludwig-Müller J. Plant natural Products: Synthesis, biological Functions and practical Applications. Weinheim: John Wiley & Sons; 2014
- 26 Cseke LJ, Kirakosyan A, Kaufman PB, Warber S, Duke JA, Brielmann HL. Natural Products from Plants. Boca Raton: CRC Press; 2016
- 27 Ockey DA, Dotson JL, Struble ME, Stults JT, Bourell JH, Clark KR, Gadek TR. Structure-activity relationships by mass spectrometry: identification of novel MMP-3 inhibitors. Bioorganic Med Chem 2004; 12: 37-44
- 28 Seigler DS. Plant secondary Metabolism. Norwell: Springer Science & Business Media; 2012
- 29 Cambie RC, Lal AR, Rickard CE, Tanaka N. Chemistry of Fijian plants. V.: Constituents of Fagraea gracilipes A. Gray. Chem Pharm Bull 1990; 38: 1857-1861
- 30 Zhou Y, Di YT, Gesang S, Peng SL, Ding LS. Secoiridoid glycosides from Swertia mileensis . Helv Chim Acta 2006; 89: 94-102
- 31 Calis I, Lahloub MF, Sticher O. Loganin, loganic acid and periclymenoside, a new biosidic ester iridoid glucoside from Lonicera periclymenum L. (Caprifoliaceae). Helv Chim Acta 1984; 67: 160-165
- 32 Hammami S, Jannet HB, Bergaoui A, Ciavatta L, Cimino G, Mighri Z. Isolation and structure elucidation of a flavanone, a flavanone glycoside and vomifoliol from Echiochilon fruticosum growing in Tunisia. Molecules 2004; 9: 602-608
- 33 Kang TH, Jeong SJ, Ko WG, Kim NY, Lee BH, Inagaki M, Miyamoto T, Higuchi R, Kim YC. Cytotoxic lavandulyl flavanones from Sophora flavescens . J Nat Prod 2000; 63: 680-681
- 34 Singh V, Yadav B, Pandey V. Flavanone glycosides from Alhagi pseudalhagi . Phytochemistry 1999; 51: 587-590
- 35 Siewek F, Herrmann K, Grotjahn L, Wray V. Isomeric di-C-glycosylflavones in fig (Ficus carica L.). Z Naturforsch C 1985; 40: 8-12
- 36 Xie C, Veitch NC, Houghton PJ, Simmonds MS. Flavone C-glycosides from Viola yedoensis Makino. Chem Pharm Bull 2003; 51: 1204-1207
- 37 Silva VCDA, Carvalho MGDE, Silva LDC. Chemical constituents from roots of Andira anthelmia (Legumonosae). Rev Latinoam Quím 2007; 35: 13-19
- 38 Maltese F, Erkelens C, van der Kooy F, Choi YH, Verpoorte R. Identification of natural epimeric flavanone glycosides by NMR spectroscopy. Food Chem 2009; 116: 575-579
- 39 Lallemand J, Duteil M. 13C nmr spectra of quercetin and rutin. Magn Reson Chem 1977; 9: 179-180
- 40 Moon BH, Lee YS, Shin CS, Lim YH. Complete assignments of the 1H and 13C NMR data of flavone derivatives. Bull Korean Chem Soc 2005; 26: 603-608
- 41 Napolitano JG, Lankin DC, Chen SN, Pauli GF. Complete 1HNMR spectral analysis of ten chemical markers of Ginkgo biloba . Magn Reson Chem 2012; 50: 569-575
- 42 Viswanadhan VN, Ghose AK, Revankar GR, Robins RK. Atomic physicochemical parameters for three dimensional structure directed quantitative structure-activity relationships. J Chem Inf Comput Sci 1989; 29: 163-172
- 43 Doak BC, Over B, Giordanetto F, Kihlberg J. Oral druggable space beyond the rule of 5: insights from drugs and clinical candidates. Chem Biol 2014; 21: 1115-1142
- 44 Kar A. Pharmacognosy and Pharmacobiotechnology. New Delhi: New Age International; 2003
- 45 House RP, Pozzuto M, Patel P, Dulyaninova NG, Li ZH, Zencheck WD, Vitolo MI, Weber DJ, Bresnick AR. Two functional S100A4 monomers are necessary for regulating nonmuscle myosin-IIA and HCT116 cell invasion. Biochemistry 2011; 50: 6920-6932
- 46 DeKruyff RH, Bu X, Ballesteros A, Santiago C, Chim YL, Lee HH, Karisola P, Pichavant M, Kaplan GG, Umetsu DT. T cell/transmembrane, Ig, and mucin-3 allelic variants differentially recognize phosphatidylserine and mediate phagocytosis of apoptotic cells. J Immunol 2010; 184: 1918-1930
- 47 Stengel KF, Harden-Bowles K, Yu X, Rouge L, Yin J, Comps-Agrar L, Wiesmann C, Bazan JF, Eaton DL, Grogan JL. Structure of TIGIT immunoreceptor bound to poliovirus receptor reveals a cell-cell adhesion and signaling mechanism that requires cis-trans receptor clustering. Proc Natl Acad Sci U S A 2012; 109: 5399-5404
- 48 Yang B, Feng YJ, Vu H, McCormick B, Rowley J, Pedro L, Crowther GJ, Van Voorhis WC, Forster PI, Quinn RJ. Bioaffinity mass spectrometry screening. J Biomol Screen 2016; 21: 194-200