Der Nuklearmediziner 2018; 41(03): 202-210
DOI: 10.1055/a-0621-3171
PET Update 2018
© Georg Thieme Verlag KG Stuttgart · New York

Von PET und PET/CT zur PET/MRT: Ein technologisches Update

From PET and PET/CT to PET/MRI: A Technological Update
Florian Büther
Klinik für Nuklearmedizin, Universitätsklinikum Münster
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
07. September 2018 (online)

Zusammenfassung

Der vorliegende Beitrag beleuchtet die wichtigsten technologischen Neuerungen auf dem Gebiet der Positronen-Emissions-Tomografie (PET) der letzten Jahre. Sowohl auf Seiten der Hardware als auch im Bereich der eingesetzten Algorithmen sorgt der Fortschritt dafür, dass die PET-Bildgebung einer der grundlegenden Pfeiler der nuklearmedizinischen Diagnostik bleiben wird. Insbesondere neue Detektoren (Szintillatormaterialien, Lichtdetektoren, Elektronik) – nicht nur für die neue PET/MRT-Bildgebung, sondern auch für die konventionelle PET/CT-Bildgebung – als auch neue Rekonstruktions- und Korrekturmethoden (iterative sowie Flugzeit- und Punktspreizantwort-basierte Rekonstruktionen, Schwächungs- und Bewegungskorrektur) sind für diese Entwicklung verantwortlich. Besonders im Hinblick auf gesteigerte Sensitivitäten und räumliche Auflösung ergeben sich hiermit interessante Perspektiven sowohl für die Grundlagenforschung als auch für klinische Anwendungen.

Abstract

This contribution presents the most important technological improvements in the field of positron emission tomography (PET) during the last few years. Progress on both hardware as well as the applied algorithms lead to the fact that PET will remain one of the basic buttresses of diagnostic imaging in nuclear medicine. In particular, new detectors (scintillator materials, light detectors, electronics) – not just for the recently introduced PET/MR imaging but also for conventional PET/CT imaging – as well as novel reconstruction and correction methods (iterative, time-of-flight- and point-spread-function-based reconstructions, attenuation and motion correction) are responsible for this advancement. This leads to exciting perpectives specifically in terms of increased sensitivities and spatial resolution both for basic research tasks and clinical applications.

 
  • Literatur

  • 1 Melcher CL. Scintillation Crystals for PET. J Nucl Med 2000; 41: 1051-1055
  • 2 Conti M, Eriksson L, Rothfuss H. et al. Characterization of 176Lu background in LSO-based PET scanners. Phys Med Biol 2017; 62: 3700-3711
  • 3 Conti M, Eriksson L, Hayden C. Monitoring energy calibration drift using the scintillator background radiation. IEEE Trans Nucl Sci 2011; 58: 687-694
  • 4 Lecoq P. Development of new scintillators for medical applications. Nucl Instr Meth Phys Res A 2016; 809: 130-139
  • 5 Luk WR, Digby WD, Jones WF. et al. An analysis of correction methods for emission contamination in PET postinjection transmission measurement. IEEE Trans Nucl Sci 1995; 42: 2303-2308
  • 6 Kinahan PE, Townsend DW, Beyer T. et al. Attenuation correction for a combined 3D PET/CT scanner. Med Phys 1998; 25: 2046-2053
  • 7 Burger C, Goerres G, Schoenes S. et al. PET attenuation coefficients from CT images: experimental evaluation of the transformation of CT into PET 511-keV attenuation coefficients. Eur J Nucl Med Mol Imaging 2002; 29: 922-927
  • 8 Visvikis D, Costa DC, Croasdale I. et al. CT-based attenuation correction in the calculation of semi-quantitative indices of [18F]FDG uptake in PET. Eur J Nucl Med Mol Imaging 2003; 30: 344-353
  • 9 Carney JP, Townsend DW, Rappoport V. et al. Method for transforming CT images for attenuation correction on PET/CT imaging. Med Phys 2006; 33: 976-983
  • 10 Pichler BJ, Judenhofer MS, Catana C. et al. Performance test of an LSO-APD detector in a 7-T MRI scanner for simultaneous PET/MRI. J Nucl Med 2006; 47: 639-647
  • 11 Performance measurements of the Siemens mMR integrated whole-body PET/MR scanner. J Nucl Med 2011; 52: 1914-1922
  • 12 Yoon HS, Ko GB, Kwon SI. et al. Initial results of simultaneous PET/MRI experiments with an MRI-compatible silicon photomultiplier PET scanner. J Nucl Med 2013; 53: 608-614
  • 13 Wagatsuma K, Miwa K, Sakata M. et al. Comparison between new-generation SiPM-based and conventional PMT-based TOF-PET/CT. Phys Med 2017; 42: 203-210
  • 14 Osborne DR, Acuff S, Cruise S. et al. Quantitative and qualitative comparison of continuous bed motion and traditional step and shoot PET/CT. Am J Nucl Med Mol Imaging 2014; 5: 56-64
  • 15 Yamashita S, Yamamoto H, Nakaichi T. et al. Comparison of image quality between step-and-shoot and continuous bed motion techniques in whole-body 18F-fluorodeoxyglucose positron emission tomography with the same acquisition duration. Ann Nucl Med 2017; 31: 686-695
  • 16 Cherry SR, Badawi RD, Karp JS. et al. Total-body imaging: Transforming the role of positron emission tomography. Sci Transl Med 2017; 9: 381
  • 17 Cherry SR, Jones T, Karp JS. et al. Total-Body PET: Maximizing sensitivity to create new opportunities for clinical research and patient care. J Nucl Med 2018; 59: 3-12
  • 18 Zhang X, Zhou J, Cherry SR. et al. Quantitative image reconstruction for total-body PET imaging using the 2-meter long EXPLORER scanner. Phys Med Biol 2017; 62: 2465-2485
  • 19 Büther F. Corrections for Physical Factors. In: Dawood M, Jiang X, Schäfers K. , Eds. Correction Techniques in Emission Tomography. CRC Press; 2012: 67-103
  • 20 Tong S, Alessio AM, Kinahan PE. Image reconstruction for PET/CT scanners: past achievements and future challenges. Imaging Med 2010; 2: 529-545
  • 21 Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging 1994; 13: 601-609
  • 22 Vandenberghe S, Mikhaylova E, D’Hoe E. et al. Recent developlments in time-of-flight PET. EJNMMI Phys 2016; 3: 3
  • 23 Panin VY, Kehren F, Michel C. et al. Fully 3-D PET reconstruction with system matrix derived from point source measurements. IEEE Trans Med Imaging 2006; 25: 907-921
  • 24 Lee YS, Kim JS, Kim KM. et al. Performance measurement of PSF modeling reconstruction (True X) on Siemens Biograph TruePoint TrueV PET/CT. Ann Nucl Med 2014; 28: 340-348
  • 25 Kidera D, Kihara K, Akamatsu G. et al. The edge artifact in the point-spread function-based PET reconstruction at different sphere-to-background ratios of radioactivity. Ann Nucl Med 2016; 30: 97-103
  • 26 Munk OL, Tolbod LP, Hansen SB. et al. Point-spread function reconstructed PET images of sub-centimeter lesions are not quantitative. EJNMMI Phys 2017; 4: 5
  • 27 Antoch G, Freudenberg LS, Egelhof T. et al. Focal tracer uptake: A potential artifact in contrast-enhanced dual-modality PET/CT scans. J Nucl Med 2002; 43: 1339-1342
  • 28 Büther F, Stegger L, Dawood M. et al. Effective methods to correct contrast agent-induced errors in PET quantification in cardiac PET/CT. J Nucl Med 2007; 48: 1060-1068
  • 29 Goerres GW, Ziegler SI, Burger C. et al. Artifacts at PET and PET/CT caused by metallic hip prosthetic material. Radiology 2003; 226: 577-584
  • 30 Büther F, Schober O. Positron Emission Tomography (PET)/Computer Tomography (CT). In: Brahme A. , Ed. Comprehensive Biomedical Physics, Volume 1: Nuclear Medicine and Molecular Imaging. Elsevier; 2014: 157-180
  • 31 Zaidi H, Montandon ML, Alavi A. Advances in attenuation correction techniques in PET. PET Clinics 2007; 2: 191-217
  • 32 Beyer T, Antoch G, Blodgett T. et al. Dual-modality PET/CT imaging: the effect of respiratory motion on combined image quality in clinical oncology. Eur J Nucl Med Mol Imaging 2003; 30: 588-96
  • 33 Goerres GW, Burger C, Kamel E. et al. Respiration-induced attenuation artifact at PET/CT: technical considerations. Radiology 2003; 226: 906-910
  • 34 Le Meunier L, Maass-Moreno R, Carrasquillo JA. et al. PET/CT imaging: Effect of respiratory motion on apparent myocardial uptake. J Nucl Card 2006; 13: 821-830
  • 35 Chi PC, Mawlawi O, Luo D. et al. Effects of respiration-averaged computed tomography on positron emission tomography/computed tomography quantification and its potential impact on gross tumor volume delineation. Int J Rad Onc Biol Phys 2008; 71: 890-899
  • 36 Eiber M, Martinez-Möller A, Souvatzoglou M. et al. Value of a Dixon-based MR/PET attenuation correction sequence for the localization and evaluation of PET-positive lesions. Eur J Nucl Med Mol Imaging 2011; 38: 1691-1701
  • 37 Hofmann M, Bezrukov I, Mantlik F. et al. MRI-based attenuation correction for whole-body PET/MRI: quantitative evaluation of segmentation- and atlas-based methods. J Nucl Med 2011; 52: 1392-1399
  • 38 Keereman V, Fierens Y, Broux T. et al. MRI-based attenuation correction for PET/MRI using ultrashort echo time sequences. J Nucl Med 2010; 51: 812-818
  • 39 Rezaei A, Defrise M, Bal G. et al. Simultaneous reconstruction of activity and attenuation in time-of-flight PET. IEEE Trans Med Imaging 2012; 31: 2224-2233
  • 40 Nehmeh SA, Erdi YE, Ling EE. et al. Effect of respiratory gating on reducing lung motion artifacts in PET imaging of lung cancer. Med Phys 2002; 29: 366-371
  • 41 Boucher L, Rodrigue S, Lecomte R. et al. Respiratory gating for 3-dimensional PET of the thorax: Feasibility and initial results. J Nucl Med 2004; 45: 214-219
  • 42 Büther F, Dawood M, Stegger L. et al. List mode-driven cardiac and respiratory gating in PET. J Nucl Med 2009; 50: 674-681
  • 43 Büther F, Vehren T, Schäfers KP. et al. Impact of data-driven respiratory gating in clinical PET. Radiology 2016; 281: 229-238
  • 44 Dawood M, Büther F, Jiang X. et al. Respiratory motion correction in 3-D PET data with advanced optical flow algorithms. IEEE Trans Med Imaging 2008; 27: 1164-1175
  • 45 Fürst S, Grimm R, Hong I. et al. Motion correction strategies for integrated PET/MR. J Nucl Med 2015; 56: 261-269