Subscribe to RSS
DOI: 10.1055/a-0652-1603
Neue Therapieansätze bei progredienter Multipler Sklerose
Publication History
Publication Date:
04 October 2018 (online)
Die Therapie der Multiplen Sklerose hat sich in den letzten Jahren durch die Entwicklung neuer Medikamente für die schubförmige Phase der Erkrankung umfangreich gewandelt. Die Entwicklung von Medikamenten gegen eine Progression war bisher hingegen – abgesehen von Ocrelizumab, einem B-Zell-depletierenden Antikörper – wenig erfolgreich. In dieser Arbeit soll eine Übersicht über das Verständnis der Pathogenese und vielversprechende Therapieansätze für Progression in unterschiedlichen Stadien der Entwicklung gegeben werden.
-
Die progrediente MS ist pathogenetisch durch eine chronische Inflammation mit Aktivierung von T- und B-Zellen und Mikroglia mit Freisetzung reaktiver Sauerstoffmetabolite, altersabhängige Akkumulation von Eisen und damit einhergehend neuronale Degeneration gekennzeichnet.
-
Der B-Zell-depletierende Antikörper Ocrelizumab ist seit 2018 für die primär progrediente MS mit Krankheitsaktivität zugelassen und reduziert das Risiko der Behinderungsprogression um ca. 20%.
-
Siponimod reduzierte Behinderungsprogression bei SPMS (Multiple Sklerose mit sekundär chronisch progredientem Verlauf) um 21% nach 3 Monaten.
-
Es gibt eine Vielzahl potenzieller therapeutischer Ansätze, bestehend aus
-
antiinflammatorischen Ansätzen,
-
neuroprotektiven Ansätzen und
-
remyelinisierenden Ansätzen.
-
-
Es besteht kein Konsens über einheitliche Outcome-Parameter bei Studien zur Progression.
-
Literatur
- 1 Lassmann H, van Horssen J, Mahad D. Progressive multiple sclerosis: pathology and pathogenesis. Nat Rev Neurol 2012; 8: 647-656 doi:10.1038/nrneurol.2012.168
- 2 Nikic I, Merkler D, Sorbara C. et al. A reversible form of axon damage in experimental autoimmune encephalomyelitis and multiple sclerosis. Nature Med 2011; 17: 495-499 doi:10.1038/nm.2324
- 3 Radbruch H, Bremer D, Guenther R. et al. Ongoing Oxidative Stress Causes Subclinical Neuronal Dysfunction in the Recovery Phase of EAE. Frontiers Immunol 2016; 7: 92 doi:10.3389/fimmu.2016.00092
- 4 Chechneva OV, Mayrhofer F, Daugherty DJ. et al. Low dose dextromethorphan attenuates moderate experimental autoimmune encephalomyelitis by inhibiting NOX2 and reducing peripheral immune cells infiltration in the spinal cord. Neurobiol Dis 2011; 44: 63-72 doi:10.1016/j.nbd.2011.06.004
- 5 Liu Y, Qin L, Li G. et al. Dextromethorphan protects dopaminergic neurons against inflammation-mediated degeneration through inhibition of microglial activation. J Pharmacol Exp Ther 2003; 305: 212-218 doi:10.1124/jpet.102.043166
- 6 Mayo L, Trauger SA, Blain M. et al. Regulation of astrocyte activation by glycolipids drives chronic CNS inflammation. Nature Med 2014; 20: 1147-1156 doi:10.1038/nm.3681
- 7 Choi JW, Gardell SE, Herr DR. et al. FTY720 (fingolimod) efficacy in an animal model of multiple sclerosis requires astrocyte sphingosine 1-phosphate receptor 1 (S1P1) modulation. Proc Natl Acad Sci U S A 2011; 108: 751-756 doi:10.1073/pnas.1014154108
- 8 Lublin F, Miller DH, Freedman MS. et al. Oral fingolimod in primary progressive multiple sclerosis (INFORMS): a phase 3, randomised, double-blind, placebo-controlled trial. Lancet 2016; 387(10023): 1075-1084 doi:10.1016/S0140-6736(15)01314-8
- 9 Gentile A, Musella A, Bullitta S. et al. Siponimod (BAF312) prevents synaptic neurodegeneration in experimental multiple sclerosis. J Neuroinflammat 2016; 13: 207 doi:10.1186/s12974-016-0686-4
- 10 Kappos L, Bar-Or A, Cree BAC. et al. Siponimod versus placebo in secondary progressive multiple sclerosis (EXPAND): a double-blind, randomised, phase 3 study. Lancet 2018; 391: 1263-1273 doi:10.1016/s0140-6736(18)30475-6
- 11 Linker RA, Lee DH, Ryan S. et al. Fumaric acid esters exert neuroprotective effects in neuroinflammation via activation of the Nrf2 antioxidant pathway. Brain 2011; 134: 678-692 doi:10.1093/brain/awq386
- 12 Gross CC, Schulte-Mecklenbeck A, Klinsing S. et al. Dimethyl fumarate treatment alters circulating T helper cell subsets in multiple sclerosis. Neurol Neuroimmunol Neuroinflamm 2016; 3: e183 doi:10.1212/nxi.0000000000000183
- 13 Ghadiri M, Rezk A, Li R. et al. Dimethyl fumarate-induced lymphopenia in MS due to differential T-cell subset apoptosis. Neurol Neuroimmunol Neuroinflamm 2017; 4: e340 doi:10.1212/nxi.0000000000000340
- 14 Fleischer V, Friedrich M, Rezk A. et al. Treatment response to dimethyl fumarate is characterized by disproportionate CD8+ T cell reduction in MS. Mult Scler 2018; 24: 632-641 doi:10.1177/1352458517703799
- 15 Li R, Rezk A, Ghadiri M. et al. Dimethyl Fumarate Treatment Mediates an Anti-Inflammatory Shift in B Cell Subsets of Patients with Multiple Sclerosis. J Immunol 2017; 198: 691-698 doi:10.4049/jimmunol.1601649
- 16 Parodi B, Rossi S, Morando S. et al. Fumarates modulate microglia activation through a novel HCAR2 signaling pathway and rescue synaptic dysregulation in inflamed CNS. Acta Neuropathol 2015; 130: 279-295 doi:10.1007/s00401-015-1422-3
- 17 Strassburger-Krogias K, Ellrichmann G, Krogias C. et al. Fumarate treatment in progressive forms of multiple sclerosis: first results of a single-center observational study. Ther Adv Neurol Disord 2014; 7: 232-238 doi:10.1177/1756285614544466
- 18 Brundula V, Rewcastle NB, Metz LM. et al. Targeting leukocyte MMPs and transmigration: minocycline as a potential therapy for multiple sclerosis. Brain 2002; 125: 1297-1308
- 19 Giuliani F, Hader W, Yong VW. Minocycline attenuates T cell and microglia activity to impair cytokine production in T cell-microglia interaction. J Leukocyte Biol 2005; 78: 135-143 doi:10.1189/jlb.0804477
- 20 Metz LM, Li DKB, Traboulsee AL. et al. Trial of Minocycline in a Clinically Isolated Syndrome of Multiple Sclerosis. N Engl J Med 2017; 376: 2122-2133 doi:10.1056/NEJMoa1608889
- 21 Koch MW, Zabad R, Giuliani F. et al. Hydroxychloroquine reduces microglial activity and attenuates experimental autoimmune encephalomyelitis. J Neurol Sci 2015; 358: 131-137 doi:10.1016/j.jns.2015.08.1525
- 22 Faissner S, Mahjoub Y, Mishra M. et al. Unexpected additive effects of minocycline and hydroxychloroquine in models of multiple sclerosis: Prospective combination treatment for progressive disease?. Mult Scler 2017; [Epub ahead of print]
- 23 Vermersch P, Benrabah R, Schmidt N. et al. Masitinib treatment in patients with progressive multiple sclerosis: a randomized pilot study. BMC Neurol 2012; 12: 36 doi:10.1186/1471-2377-12-36
- 24 Howell OW, Reeves CA, Nicholas R. et al. Meningeal inflammation is widespread and linked to cortical pathology in multiple sclerosis. Brain 2011; 134: 2755-2771 doi:10.1093/brain/awr182
- 25 Choi SR, Howell OW, Carassiti D. et al. Meningeal inflammation plays a role in the pathology of primary progressive multiple sclerosis. Brain 2012; 135: 2925-2937 doi:10.1093/brain/aws189
- 26 Magliozzi R, Howell OW, Reeves C. et al. A Gradient of neuronal loss and meningeal inflammation in multiple sclerosis. Ann Neurol 2010; 68: 477-493 doi:10.1002/ana.22230
- 27 Romme Christensen J, Bornsen L, Ratzer R. et al. Systemic inflammation in progressive multiple sclerosis involves follicular T-helper, Th17- and activated B-cells and correlates with progression. PloS One 2013; 8: e57820 doi:10.1371/journal.pone.0057820
- 28 Hawker K, OʼConnor P, Freedman MS. et al. Rituximab in patients with primary progressive multiple sclerosis: results of a randomized double-blind placebo-controlled multicenter trial. Ann Neurol 2009; 66: 460-471 doi:10.1002/ana.21867
- 29 Komori M, Lin YC, Cortese I. et al. Insufficient disease inhibition by intrathecal rituximab in progressive multiple sclerosis. Ann Clin Transl Neurol 2016; 3: 166-179 doi:10.1002/acn3.293
- 30 Montalban X, Hauser SL, Kappos L. et al. Ocrelizumab versus Placebo in Primary Progressive Multiple Sclerosis. N Engl J Med 2017; 376: 209-220 doi:10.1056/NEJMoa1606468
- 31 Siders W, Wei R, Greene B. et al. GZ402668, a next-generation anti-CD52 antibody, displays decreased proinflammatory cytokine release in vitro. Neurology 2016; 86 (16 Supplement): P3.068
- 32 Androdias G, Reynolds R, Chanal M. et al. Meningeal T cells associate with diffuse axonal loss in multiple sclerosis spinal cords. Ann Neurol 2010; 68: 465-476 doi:10.1002/ana.22054
- 33 Komori M, Blake A, Greenwood M. et al. Cerebrospinal fluid markers reveal intrathecal inflammation in progressive multiple sclerosis. Ann Neurol 2015; 78: 3-20 doi:10.1002/ana.24408
- 34 Kutzelnigg A, Lucchinetti CF, Stadelmann C. et al. Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain 2005; 128: 2705-2712 doi:10.1093/brain/awh641
- 35 Rice CM, Mallam EA, Whone AL. et al. Safety and feasibility of autologous bone marrow cellular therapy in relapsing-progressive multiple sclerosis. Clin Pharmacol Ther 2010; 87: 679-685 doi:10.1038/clpt.2010.44
- 36 Connick P, Kolappan M, Crawley C. et al. Autologous mesenchymal stem cells for the treatment of secondary progressive multiple sclerosis: an open-label phase 2a proof-of-concept study. Lancet Neurol 2012; 11: 150-156 doi:10.1016/s1474-4422(11)70305-2
- 37 Mancardi GL, Sormani MP, Gualandi F. et al. Autologous hematopoietic stem cell transplantation in multiple sclerosis: a phase II trial. Neurology 2015; 84: 981-988 doi:10.1212/wnl.0000000000001329
- 38 Cull G, Hall D, Fabis-Pedrini MJ. et al. Lymphocyte reconstitution following autologous stem cell transplantation for progressive MS. Mult Scler J Exp Transl Clin 2017; 3: 2055217317700167 doi:10.1177/2055217317700167
- 39 Casanova B, Jarque I, Gascon F. et al. Autologous hematopoietic stem cell transplantation in relapsing-remitting multiple sclerosis: comparison with secondary progressive multiple sclerosis. Neurol Sci 2017; 38: 1213-1221 doi:10.1007/s10072-017-2933-6
- 40 Muraro PA, Pasquini M, Atkins HL. et al. Long-term Outcomes After Autologous Hematopoietic Stem Cell Transplantation for Multiple Sclerosis. JAMA Neurol 2017; 74: 459-469 doi:10.1001/jamaneurol.2016.5867
- 41 Trapp BD, Peterson J, Ransohoff RM. et al. Axonal transection in the lesions of multiple sclerosis. N Engl J Med 1998; 338: 278-285 doi:10.1056/NEJM199801293380502
- 42 Bitsch A, Schuchardt J, Bunkowski S. et al. Acute axonal injury in multiple sclerosis. Correlation with demyelination and inflammation. Brain 2000; 123 (Pt 6): 1174-1183 doi:10.1093/brain/123.6.1174
- 43 Sorbara CD, Wagner NE, Ladwig A. et al. Pervasive axonal transport deficits in multiple sclerosis models. Neuron 2014; 84: 1183-1190 doi:10.1016/j.neuron.2014.11.006
- 44 Craner MJ, Newcombe J, Black JA. et al. Molecular changes in neurons in multiple sclerosis: altered axonal expression of Nav1.2 and Nav1.6 sodium channels and Na+/Ca2+ exchanger. Proc Natl Acad Sci U S A 2004; 101: 8168-8173 doi:10.1073/pnas.0402765101
- 45 Waxman SG. Mechanisms of disease: sodium channels and neuroprotection in multiple sclerosis-current status. Nature Clin Pract Neurol 2008; 4: 159-169 doi:10.1038/ncpneuro0735
- 46 Paling D, Solanky BS, Riemer F. et al. Sodium accumulation is associated with disability and a progressive course in multiple sclerosis. Brain 2013; 136: 2305-2317 doi:10.1093/brain/awt149
- 47 Kapoor R, Furby J, Hayton T. et al. Lamotrigine for neuroprotection in secondary progressive multiple sclerosis: a randomised, double-blind, placebo-controlled, parallel-group trial. Lancet Neurol 2010; 9: 681-688 doi:10.1016/s1474-4422(10)70131-9
- 48 Miller DH, Soon D, Fernando KT. et al. MRI outcomes in a placebo-controlled trial of natalizumab in relapsing MS. Neurology 2007; 68: 1390-1401 doi:10.1212/01.wnl.0000260064.77700.fd
- 49 Friese MA, Craner MJ, Etzensperger R. et al. Acid-sensing ion channel-1 contributes to axonal degeneration in autoimmune inflammation of the central nervous system. Nature Med 2007; 13: 1483-1489 doi:10.1038/nm1668
- 50 Vergo S, Craner MJ, Etzensperger R. et al. Acid-sensing ion channel 1 is involved in both axonal injury and demyelination in multiple sclerosis and its animal model. Brain 2011; 134: 571-584 doi:10.1093/brain/awq337
- 51 Arun T, Tomassini V, Sbardella E. et al. Targeting ASIC1 in primary progressive multiple sclerosis: evidence of neuroprotection with amiloride. Brain 2013; 136: 106-115 doi:10.1093/brain/aws325
- 52 Gilgun-Sherki Y, Panet H, Melamed E. et al. Riluzole suppresses experimental autoimmune encephalomyelitis: implications for the treatment of multiple sclerosis. Brain Res 2003; 989: 196-204 doi:10.1016/S0006-8993(03)03343-2
- 53 Kalkers NF, Barkhof F, Bergers E. et al. The effect of the neuroprotective agent riluzole on MRI parameters in primary progressive multiple sclerosis: a pilot study. Mult Scler 2002; 8: 532-533 doi:10.1191/1352458502ms849xx
- 54 Allaman I, Fiumelli H, Magistretti PJ. et al. Fluoxetine regulates the expression of neurotrophic/growth factors and glucose metabolism in astrocytes. Psychopharmacology 2011; 216: 75-84 doi:10.1007/s00213-011-2190-y
- 55 Mostert JP, Sijens PE, Oudkerk M. et al. Fluoxetine increases cerebral white matter NAA/Cr ratio in patients with multiple sclerosis. Neurosci Lett 2006; 402: 22-24 doi:10.1016/j.neulet.2006.03.042
- 56 Mostert J, Heersema T, Mahajan M. et al. The effect of fluoxetine on progression in progressive multiple sclerosis: a double-blind, randomized, placebo-controlled trial. ISRN Neurol 2013; 2013: 370943 doi:10.1155/2013/370943
- 57 Black JA, Liu S, Hains BC. et al. Long-term protection of central axons with phenytoin in monophasic and chronic-relapsing EAE. Brain 2006; 129: 3196-3208 doi:10.1093/brain/awl216
- 58 Raftopoulos R, Hickman SJ, Toosy A. et al. Phenytoin for neuroprotection in patients with acute optic neuritis: a randomised, placebo-controlled, phase 2 trial. Lancet Neurol 2016; 15: 259-269 doi:10.1016/s1474-4422(16)00004-1
- 59 Barkhof F, Hulst HE, Drulovic J. et al. Ibudilast in relapsing-remitting multiple sclerosis: a neuroprotectant?. Neurology 2010; 74: 1033-1040 doi:10.1212/WNL.0b013e3181d7d651
- 60 Fox RJ, Coffey CS, Cudkowicz ME. et al. Design, rationale, and baseline characteristics of the randomized double-blind phase II clinical trial of ibudilast in progressive multiple sclerosis. Contemp Clin Trials 2016; 50: 166-177 doi:10.1016/j.cct.2016.08.009
- 61 Fox RJ, Coffey CS, Conwit R. et al. Phase 2 trial of ibudilast in progressive multiple sclerosis. N Engl J Med 2018; 379: 846-855 doi:10.1056/NEJMoa1803583
- 62 Chataway J, Schuerer N, Alsanousi A. et al. Effect of high-dose simvastatin on brain atrophy and disability in secondary progressive multiple sclerosis (MS-STAT): a randomised, placebo-controlled, phase 2 trial. Lancet 2014; 383: 2213-2221 doi:10.1016/s0140-6736(13)62242-4
- 63 Chan D, Binks S, Nicholas JM. et al. Effect of high-dose simvastatin on cognitive, neuropsychiatric, and health-related quality-of-life measures in secondary progressive multiple sclerosis: secondary analyses from the MS-STAT randomised, placebo-controlled trial. Lancet Neurol 2017; 16: 591-600 doi:10.1016/s1474-4422(17)30113-8
- 64 Hametner S, Wimmer I, Haider L. et al. Iron and neurodegeneration in the multiple sclerosis brain. Ann Neurol 2013; 74: 848-861 doi:10.1002/ana.23974
- 65 Haider L, Simeonidou C, Steinberger G. et al. Multiple sclerosis deep grey matter: the relation between demyelination, neurodegeneration, inflammation and iron. J Neurol Neurosurg Psychiat 2014; 85: 1386-1395 doi:10.1136/jnnp-2014-307712
- 66 Faissner S, Mishra M, Kaushik DK. et al. Systematic screening of generic drugs for progressive multiple sclerosis identifies clomipramine as a promising therapeutic. Nature Commun 2017; 8: 1990 doi:10.1038/s41467-017-02119-6
- 67 Witte ME, Bo L, Rodenburg RJ. et al. Enhanced number and activity of mitochondria in multiple sclerosis lesions. J Pathol 2009; 219: 193-204 doi:10.1002/path.2582
- 68 Kiryu-Seo S, Ohno N, Kidd GJ. et al. Demyelination increases axonal stationary mitochondrial size and the speed of axonal mitochondrial transport. J Neurosci 2010; 30: 6658-6666 doi:10.1523/jneurosci.5265-09.2010
- 69 Mahad DJ, Ziabreva I, Campbell G. et al. Mitochondrial changes within axons in multiple sclerosis. Brain 2009; 132: 1161-1174 doi:10.1093/brain/awp046
- 70 Chamberlain KA, Chapey KS, Nanescu SE. et al. Creatine enhances mitochondrial-mediated oligodendrocyte survival after demyelinating injury. J Neurosci 2017; 37: 1479-1492 doi:10.1523/jneurosci.1941-16.2016
- 71 Di Filippo M, Tozzi A, Tantucci M. et al. Interferon-beta1a protects neurons against mitochondrial toxicity via modulation of STAT1 signaling: electrophysiological evidence. Neurobiol Dis 2014; 62: 387-393 doi:10.1016/j.nbd.2013.09.022
- 72 Leary SM, Miller DH, Stevenson VL. et al. Interferon beta-1a in primary progressive MS: an exploratory, randomized, controlled trial. Neurology 2003; 60: 44-51
- 73 Kuhle J, Hardmeier M, Disanto G. et al. A 10-year follow-up of the European multicenter trial of interferon beta-1b in secondary-progressive multiple sclerosis. Mult Scler 2016; 22: 533-543 doi:10.1177/1352458515594440
- 74 Tranah GJ, Santaniello A, Caillier SJ. et al. Mitochondrial DNA sequence variation in multiple sclerosis. Neurology 2015; 85: 325-330 doi:10.1212/WNL.0000000000001744
- 75 Joshi DC, Zhang CL, Lin TM. et al. Deletion of mitochondrial anchoring protects dysmyelinating shiverer: implications for progressive MS. J Neurosci 2015; 35: 5293-5306 doi:10.1523/JNEUROSCI.3859-14.2015
- 76 Ruckh JM, Zhao JW, Shadrach JL. et al. Rejuvenation of regeneration in the aging central nervous system. Cell Stem Cell 2012; 10: 96-103 doi:10.1016/j.stem.2011.11.019
- 77 Mei F, Fancy SPJ, Shen YA. et al. Micropillar arrays as a high-throughput screening platform for therapeutics in multiple sclerosis. Nature Med 2014; 20: 954-960 doi:10.1038/nm.3618
- 78 Mi S, Hu B, Hahm K. et al. LINGO-1 antagonist promotes spinal cord remyelination and axonal integrity in MOG-induced experimental autoimmune encephalomyelitis. Nature Med 2007; 13: 1228-1233 doi:10.1038/nm1664
- 79 Cadavid D, Balcer L, Galetta S. et al. Safety and efficacy of opicinumab in acute optic neuritis (RENEW): a randomised, placebo-controlled, phase 2 trial. Lancet Neurol 2017; 16: 189-199 doi:10.1016/s1474-4422(16)30377-5
- 80 Tourbah A, Lebrun-Frenay C, Edan G. et al. MD1003 (high-dose biotin) for the treatment of progressive multiple sclerosis: A randomised, double-blind, placebo-controlled study. Mult Scler 2016; 22: 1719-1731 doi:10.1177/1352458516667568
- 81 Sedel F, Papeix C, Bellanger A. et al. High doses of biotin in chronic progressive multiple sclerosis: a pilot study. Mult Scler Relat Disord 2015; 4: 159-169 doi:10.1016/j.msard.2015.01.005
- 82 Gregg C, Shikar V, Larsen P. et al. White matter plasticity and enhanced remyelination in the maternal CNS. J Neurosci 2007; 27: 1812-1823 doi:10.1523/jneurosci.4441-06.2007
- 83 Zhornitsky S, Johnson TA, Metz LM. et al. Prolactin in combination with interferon-beta reduces disease severity in an animal model of multiple sclerosis. J Neuroinflammat 2015; 12: 55 doi:10.1186/s12974-015-0278-8
- 84 Keough MB, Rogers JA, Zhang P. et al. An inhibitor of chondroitin sulfate proteoglycan synthesis promotes central nervous system remyelination. Nature Commun 2016; 7: 11312 doi:10.1038/ncomms11312
- 85 Lau LW, Keough MB, Haylock-Jacobs S. et al. Chondroitin sulfate proteoglycans in demyelinated lesions impair remyelination. Ann Neurol 2012; 72: 419-432 doi:10.1002/ana.23599
- 86 Sobel RA, Ahmed AS. White matter extracellular matrix chondroitin sulfate/dermatan sulfate proteoglycans in multiple sclerosis. J Neuropathol Exp Neurol 2001; 60: 1198-1207
- 87 Stoffels JM, de Jonge JC, Stancic M. et al. Fibronectin aggregation in multiple sclerosis lesions impairs remyelination. Brain 2013; 136: 116-131 doi:10.1093/brain/aws313
- 88 Tepavcevic V, Kerninon C, Aigrot MS. et al. Early netrin-1 expression impairs central nervous system remyelination. Ann Neurol 2014; 76: 252-268 doi:10.1002/ana.24201
- 89 Bin JM, Rajasekharan S, Kuhlmann T. et al. Full-length and fragmented netrin-1 in multiple sclerosis plaques are inhibitors of oligodendrocyte precursor cell migration. Am J Pathol 2013; 183: 673-680 doi:10.1016/j.ajpath.2013.06.004
- 90 Plemel JR, Liu WQ, Yong VW. Remyelination therapies: a new direction and challenge in multiple sclerosis. Nat Rev Drug Discov 2017; 16: 617-634 doi:10.1038/nrd.2017.115
- 91 Kosa P, Ghazali D, Tanigawa M. et al. Development of a sensitive outcome for economical drug screening for progressive multiple sclerosis treatment. Front Neurol 2016; 7: 131 doi:10.3389/fneur.2016.00131
- 92 Green AJ, Gelfand JM, Cree BA. et al. Clemastine fumarate as a remyelinating therapy for multiple sclerosis (ReBUILD): a randomised, controlled, double-blind, crossover trial. Lancet 2017; 390: 2481-2489 doi:10.1016/s0140-6736(17)32346-2
- 93 Tran JQ, Rana J, Barkhof F. et al. Randomized phase I trials of the safety/tolerability of anti-LINGO-1 monoclonal antibody BIIB033. Neurol Neuroimmunol Neuroinflamm 2014; 1: e18 doi:10.1212/nxi.0000000000000018