Der Nuklearmediziner, Inhaltsverzeichnis Der Nuklearmediziner 2018; 41(04): 335-347DOI: 10.1055/a-0671-5479 CME-Fortbildung © Georg Thieme Verlag KG Stuttgart · New York 68Ga-Radiopharmaka: Methode oder Episode? 68Ga-Radiopharmaceuticals: Method or Episode? Johannes Notni Technische Universität München, Garching , Hans-Jürgen Wester Technische Universität München, Garching › Institutsangaben Artikel empfehlen Abstract Artikel einzeln kaufen 68Ga macht seit einiger Zeit eine steile Karriere in Radiopharmazie und klinischer PET und hat für einige Krankheitsbilder das Patientenmanagement erheblich beeinflusst. Wird dieser Boom anhalten? Schlüsselwörter SchlüsselwörterGallium-68 - Radionuklidgeneratoren - Positronenemissionstomographie - Neuroendokrine - Tumoren - Prostatakarzinom Volltext Referenzen Literatur 1 Levine R, Krenning EP. Clinical History of the Theranostic Radionuclide Approach to Neuroendocrine Tumors and Other Types of Cancer: Historical Review Based on an Interview of Eric P. Krenning by Rachel Levine. J Nucl Med 2017; 58: 3S-9S 2 Lütje S, Slavik R, Fendler W. et al. PSMA ligands in prostate cancer - Probe optimization and theranostic applications. Methods 2017; 130: 42-50 3 Walenkamp AME, Lapa C, Herrmann K. et al. CXCR4 Ligands: The Next Big Hit?. J Nucl Med 2017; 58: 77S-82S 4 Notni J, Wester HJ. Re-thinking the role of radiometal isotopes: Towards a future concept for theranostic radiopharmaceuticals. J Label Compd Radiopharm 2018; 61: 141-153 5 Lin M, Waligorski GJ, Lepera CG. Production of Curie quantities of 68Ga with a medical cyclotron via the 68Zn(p, n)68Ga reaction. Appl Rad Isot 2018; 133: 1-3 6 Šimeček J, Hermann P, Wester HJ. et al. How is 68Ga-labelling of macrocyclic chelators influenced by metal ion contaminants in 68Ge/68Ga generator eluates?. ChemMedChem 2013; 8: 95-103 7 Hacht B. Gallium (III) ion hydrolysis under physiological conditions. Bull Korean Chem Soc 2008; 29: 372-376 8 Uchida M, Okuwaki A. Potentiometric determination of the first hydrolysis constant of gallium(III) in NaCl solution to 100°C. J Sol Chem 1998; 27: 965-978 9 Tsionou MI, Knapp CE, Foley CA. et al. Comparison of macrocyclic and acyclic chelators for gallium-68 radiolabelling. RSC Adv 2017; 7: 49586 10 Beheshti M, Paymani Z, Brilhante J. et al. Optimal time-point for Ga-68-PSMA-11 PET/CT imaging in assessment of prostate cancer: feasibility of sterile cold-kit tracer preparation?. Eur J Nucl Med Mol Imaging 2018; 45: 1188-1196 11 Ginj M, Zhang H, Waser B. et al. Radiolabeled somatostatin receptor antagonists are preferable to agonists for in vivo peptide receptor targeting of tumors. Proc Natl Acad Sci U S A 2006; 103: 16436-16441 12 Nicolas GP, Schreiter N, Kaul F. et al. Sensitivity Comparison of 68Ga-OPS202 and 68Ga-DOTATOC PET/CT in Patients with Gastroenteropancreatic Neuroendocrine Tumors: A Prospective Phase II Imaging Study. J Nucl Med 2018; 59: 915-921 13 Kulkarni HR, Singh A, Schuchardt C. et al. PSMA-Based Radioligand Therapy for Metastatic Castration-Resistant Prostate Cancer: The Bad Berka Experience Since 2013. J Nucl Med 2016; 57: 97S-104S 14 Fendler WP, Eiber M, Beheshti M. et al. 68Ga-PSMA PET/CT: Joint EANM and SNMMI procedure guideline for prostate cancer imaging: version 1.0. Eur J Nucl Med Mol Imaging 2017; 44: 1014-1024 15 Wurzer A, Seidl C, Morgenstern A. et al. Dual-Nuclide Radiopharmaceuticals for Positron Emission Tomography Based Dosimetry in Radiotherapy. Chem Eur J 2018; 24: 547-550 16 Wester HJ, Keller U, Schottelius M. et al. Disclosing the CXCR4 expression in lymphoproliferative diseases by targeted molecular imaging. Theranostics 2015; 5: 618-630 17 Philipp-Abbrederis K, Herrmann K, Knop S. et al. In vivo molecular imaging of chemokine receptor CXCR4 expression in patients with advanced multiple myeloma. EMBO Mol Med 2015; 7: 477-487 18 Reubi JC, Wenger S, Schmuckli-Maurer J. et al. Bombesin receptor subtypes in human cancers: detection with the universal radioligand (125)I-[D-TYR(6), beta-ALA(11), PHE(13), NLE(14)] bombesin(6-14). Clin Cancer Res 2002; 8: 1139-1146 19 Minamimoto R, Sonni I, Hancock S. et al. Prospective Evaluation of 68Ga-RM2 PET/MRI in Patients with Biochemical Recurrence of Prostate Cancer and Negative Findings on Conventional Imaging. J Nucl Med 2018; 59: 803-808 20 Hamson EJ, Keane FM, Tholen S. et al. Understanding fibroblast activation protein (FAP): substrates, activities, expression and targeting for cancer therapy. Proteomics Clin Appl 2014; 8: 454-463 21 Lindner T, Loktev A, Altmann A. et al. Development of Quinoline-Based Theranostic Ligands for the Targeting of Fibroblast Activation Protein. J Nucl Med 2018; 59: 1415-1422 22 Loktev A, Lindner T, Mier W. et al. A Tumor-Imaging Method Targeting Cancer-Associated Fibroblasts. J Nucl Med 2018; 59: 1423-1429 23 Giesel F, Kratochwil C, Lindner T. et al. FAPI-PET/CT: biodistribution and preliminary dosimetry estimate of two DOTA-containing FAP-targeting agents in patients with various cancers. J Nucl Med 2018; [Epub ahead of print]