Planta Med 2019; 85(01): 41-47
DOI: 10.1055/a-0706-7503
Biological and Pharmacological Activity
Original Papers
Georg Thieme Verlag KG Stuttgart · New York

Mechanism of Cepharanthine Cytotoxicity in Human Ovarian Cancer Cells

Vilawan Payon
1   Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
,
Chanaporn Kongsaden
1   Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
,
Wannarasmi Ketchart
1   Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
,
Apiwat Mutirangura
2   Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
,
Piyanuch Wonganan
1   Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
› Author Affiliations
Further Information

Publication History

received 25 January 2018
revised 09 August 2018

accepted 14 August 2018

Publication Date:
24 August 2018 (online)

Abstract

Cepharanthine (CEP), a medicinal product derived from Stephania cephalantha Hayata, possesses a potent cytotoxicity against several types of cancers. Recently, we have found that CEP could efficiently inhibit the growth of mutated p53 colon cancer cells, which are often resistant to commonly used chemotherapeutic agents. In this study, we evaluated the cytotoxic effect and the underlying mechanisms of CEP on both chemosensitive CaOV-3 and chemoresistant OVCAR-3 ovarian cancer cell lines. The present study demonstrated that CEP significantly inhibited the growth of CaOV-3 and OVCAR-3 cells in a time- and concentration-dependent manner. CEP arrested CaOV-3 and OVCAR-3 cells in the G1 phase and S phase of cell cycle, respectively. Western blot analysis demonstrated that CEP markedly increased the expression of p21Waf1 protein and decreased the expression of cyclins A and D proteins in both CaOV-3 and OVCAR-3 cells. Additionally, CEP triggered apoptotic cell death in OVCAR-3 cells. Taken together, the above results suggest that CEP is a promising anticancer drug for ovarian cancer.

Supporting Information

 
  • References

  • 1 Jones MR, Kamara D, Karlan BY, Pharoah PDP, Gayther SA. Genetic epidemiology of ovarian cancer and prospects for polygenic risk prediction. Gynecol Oncol 2017; 147: 705-713
  • 2 Hennessy BT, Coleman RL, Markman M. Ovarian cancer. Lancet 2009; 374: 1371-1382
  • 3 Giuliani J, Bonetti A. The pharmacological costs of second-line treatments for recurrent ovarian cancer. Int J Gynecol Cancer 2017; 27: 1872-1876
  • 4 Corrado G, Salutari V, Palluzzi E, Distefano MG, Scambia G, Ferrandina G. Optimizing treatment in recurrent epithelial ovarian cancer. Expert Rev Anticancer Ther 2017; 17: 1147-1158
  • 5 Furusawa S, Wu J. The effects of biscoclaurine alkaloid cepharanthine on mammalian cells: implications for cancer, shock, and inflammatory diseases. Life Sci 2007; 80: 1073-1079
  • 6 Desgrouas C, Taudon N, Bun SS, Baghdikian B, Bory S, Parzy D, Ollivier E. Ethnobotany, phytochemistry and pharmacology of Stephania rotunda Lour. J Ethnopharmacol 2014; 154: 537-563
  • 7 Gulcin I, Elias R, Gepdiremen A, Chea A, Topal F. Antioxidant activity of bisbenzylisoquinoline alkaloids from Stephania rotunda: cepharanthine and fangchinoline. J Enzyme Inhib Med Chem 2010; 25: 44-53
  • 8 Rogosnitzky M, Danks R. Therapeutic potential of the biscoclaurine alkaloid, cepharanthine, for a range of clinical conditions. Pharmacol Rep 2011; 63: 337-347
  • 9 Huang H, Hu G, Wang C, Xu H, Chen X, Qian A. Cepharanthine, an alkaloid from Stephania cepharantha Hayata, inhibits the inflammatory response in the RAW264.7 cell and mouse models. Inflammation 2014; 37: 235-246
  • 10 Wu J, Suzuki H, Zhou YW, Liu W, Yoshihara M, Kato M, Akhand AA, Hayakawa A, Takeuchi K, Hossain K, Kurosawa M, Nakashima I. Cepharanthine activates caspases and induces apoptosis in Jurkat and K562 human leukemia cell lines. J Cell Biochem 2001; 82: 200-214
  • 11 Harada K, Supriatno. Yamamoto S, Kawaguchi S, Yoshida H, Sato M. Cepharanthine exerts antitumor activity on oral squamous cell carcinoma cell lines by induction of p27Kip1. Anticancer Res 2003; 23: 1441-1448
  • 12 Biswas KK, Tancharoen S, Sarker KP, Kawahara K, Hashiguchi T, Maruyama I. Cepharanthine triggers apoptosis in a human hepatocellular carcinoma cell line (HuH-7) through the activation of JNK1/2 and the downregulation of Akt. FEBS Lett 2006; 580: 703-710
  • 13 Kikukawa Y, Okuno Y, Tatetsu H, Nakamura M, Harada N, Ueno S, Kamizaki Y, Mitsuya H, Hata H. Induction of cell cycle arrest and apoptosis in myeloma cells by cepharanthine, a biscoclaurine alkaloid. Int J Oncol 2008; 33: 807-814
  • 14 Seubwai W, Vaeteewoottacharn K, Hiyoshi M, Suzu S, Puapairoj A, Wongkham C, Okada S, Wongkham S. Cepharanthine exerts antitumor activity on cholangiocarcinoma by inhibiting NF-kappaB. Cancer Sci 2010; 101: 1590-1595
  • 15 Chen Z, Huang C, Yang YL, Ding Y, Ou-Yang HQ, Zhang YY, Xu M. Inhibition of the STAT3 signaling pathway is involved in the antitumor activity of cepharanthine in SaOS2 cells. Acta Pharmacol Sin 2012; 33: 101-108
  • 16 Fang ZH, Li YJ, Chen Z, Wang JJ, Zhu LH. Inhibition of signal transducer and activator of transcription 3 and cyclooxygenase-2 is involved in radiosensitization of cepharanthine in HeLa cells. Int J Gynecol Cancer 2013; 23: 608-614
  • 17 Liu G, Wu D, Liang X, Yue H, Cui Y. Mechanisms and in vitro effects of cepharanthine hydrochloride: classification analysis of the drug-induced differentially-expressed genes of human nasopharyngeal carcinoma cells. Oncol Rep 2015; 34: 2002-2010
  • 18 Hua P, Sun M, Zhang G, Zhang Y, Tian X, Li X, Cui R, Zhang X. Cepharanthine induces apoptosis through reactive oxygen species and mitochondrial dysfunction in human non-small-cell lung cancer cells. Biochem Biophys Res Commun 2015; 460: 136-142
  • 19 Harada K, Bando T, Yoshida H, Sato M. Characteristics of antitumour activity of cepharanthin against a human adenosquamous cell carcinoma cell line. Oral Oncol 2001; 37: 643-651
  • 20 Rattanawong A, Payon V, Limpanasittikul W, Boonkrai C, Mutirangura A, Wonganan P. Cepharanthine exhibits a potent anticancer activity in p53-mutated colorectal cancer cells through upregulation of p21Waf1/Cip1 . Oncol Rep 2018; 39: 227-238
  • 21 Yin F, Liu X, Li D, Wang Q, Zhang W, Li L. Tumor suppressor genes associated with drug resistance in ovarian cancer (review). Oncol Rep 2013; 30: 3-10
  • 22 Liu X, Gao Y, Lu Y, Zhang J, Li L, Yin F. Oncogenes associated with drug resistance in ovarian cancer. J Cancer Res Clin Oncol 2015; 141: 381-395
  • 23 Beaufort CM, Helmijr JC, Piskorz AM, Hoogstraat M, Ruigrok-Ritstier K, Besselink N, Murtaza M, van Ijcken WF, Heine AA, Smid M, Koudijs MJ, Brenton JD, Berns EM, Helleman J. Ovarian cancer cell line panel (OCCP): clinical importance of in vitro morphological subtypes. PLoS One 2014; 9: e103988
  • 24 Dobbin ZC, Landen CN. The importance of the PI3K/AKT/MTOR pathway in the progression of ovarian cancer. Int J Mol Sci 2013; 14: 8213-8227
  • 25 Carden CP, Stewart A, Thavasu P, Kipps E, Pope L, Crespo M, Miranda S, Attard G, Garrett MD, Clarke PA, Workman P, de Bono JS, Gore M, Kaye SB, Banerji U. The association of PI3 kinase signaling and chemoresistance in advanced ovarian cancer. Mol Cancer Ther 2012; 11: 1609-1617
  • 26 Kanska J, Zakhour M, Taylor-Harding B, Karlan BY, Wiedemeyer WR. Cyclin E as a potential therapeutic target in high grade serous ovarian cancer. Gynecol Oncol 2016; 143: 152-158
  • 27 Nakayama N, Nakayama K, Shamima Y, Ishikawa M, Katagiri A, Iida K, Miyazaki K. Gene amplification CCNE1 is related to poor survival and potential therapeutic target in ovarian cancer. Cancer 2010; 116: 2621-2634
  • 28 Hashimoto T, Yanaihara N, Okamoto A, Nikaido T, Saito M, Takakura S, Yasuda M, Sasaki H, Ochiai K, Tanaka T. Cyclin D1 predicts the prognosis of advanced serous ovarian cancer. Exp Ther Med 2011; 2: 213-219
  • 29 Barbieri F, Lorenzi P, Ragni N, Schettini G, Bruzzo C, Pedulla F, Alama A. Overexpression of cyclin D1 is associated with poor survival in epithelial ovarian cancer. Oncology 2004; 66: 310-315
  • 30 Vermeulen K, Berneman ZN, Van Bockstaele DR. Cell cycle and apoptosis. Cell Prolif 2003; 36: 165-175
  • 31 Haupt S, Berger M, Goldberg Z, Haupt Y. Apoptosis – the p53 network. J Cell Sci 2003; 116: 4077-4085
  • 32 Mattes MJ. Apoptosis assays with lymphoma cell lines: problems and pitfalls. Br J Cancer 2007; 96: 928-936
  • 33 Youle RJ, Strasser A. The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 2008; 9: 47-59