Klin Monbl Augenheilkd 2019; 236(04): 551-554
DOI: 10.1055/a-0747-5333
Klinische Studie
Georg Thieme Verlag KG Stuttgart · New York

Intra- and Interdevice Deviation of Optical Coherence Tomography Angiography

Vergleich verschiedener optischer Kohärenztomografie-Angiografie-Geräte bei der Vermessung der fovealen avaskulären Zone
Stefan Trachsler
1   Augenklinik, Kantonsspital Aarau, Aarau, Switzerland
,
Arthur Emanuel Baston
2   Augenklinik, Universitätsspital Basel, Basel, Switzerland
,
Marcel Menke
1   Augenklinik, Kantonsspital Aarau, Aarau, Switzerland
› Author Affiliations
Further Information

Publication History

received 24 June 2018

accepted 28 August 2018

Publication Date:
27 March 2019 (online)

Abstract

Purpose To compare 4 optical coherence tomography-angiography (OCT-A) devices for foveal avascular zone (FAZ) measurements in healthy subjects.

Methods The central retinas of 24 eyes of 12 healthy subjects were scanned with 4 different OCT-A devices (Optovue RTVue-XR, Zeiss Cirrus 5000-HD-OCT, a prototype Spectralis OCT2, Heidelberg Engineering, and Topcon DRI-OCT Triton Swept-source OCT). For the Topcon, Zeiss, and Optovue devices, 3-mm and 6-mm scans were performed. The Heidelberg device only provided 4-mm scans. En-face OCT-A images of the superficial and deep capillary plexus of the macular area were generated. The FAZ areas were measured and compared.

Results Twenty-four healthy eyes were included. OCT-A devices showed significant differences in FAZ measurements. The Zeiss OCT-A device measured the smallest values for foveal avascular area (mean 218.7 mm2), followed by the Optovue device (229.6 mm2), the Topcon device (239.3 mm2), and the Heidelberg device (250.4 mm2). Differences were statistically significant for following devices: Heidelberg versus Optovue (p < 0.001), Heidelberg versus Zeiss (p < 0.001), Topcon versus Zeiss (p < 0.001), and Optovue versus Zeiss (p = 0.046). For the Optovue device, FAZ measurements were significantly different between 3 mm (mean 220 mm2) and 6 mm (mean 239.3 mm2, p = 0.007) scans. All other devices showed no significant difference within scan modes.

Conclusion Current OCT-A devices provide images that allow such measurements, but values showed significant differences between devices and, for the Optovue instrument, even within scan modes. The data for OCTA measurements cannot be transferred interchangeably between the devices. Therefore, a patient should always be measured with the same device.

Zusammenfassung

Zweck Vergleich der Messergebnisse von 4 verschiedenen optischen Kohärenztomografie-Angiografie-Geräten (OCT-A-Geräten) bei der Vermessung der Fläche der fovealen avaskulären Zone (FAZ) bei gesunden Probanden.

Methoden In 24 Augen von 12 gesunden Probanden wurde die zentrale Netzhaut mit 4 verschiedenen OCT-A-Geräten gescannt (Optovue RTVue-XR, Zeiss Cirrus 5000-HD‑OCT, der Prototyp von Spectralis OCT2, Heidelberg Engineering, und Topcon DRI‑OCT Triton Swept-source OCT). Bei den Geräten von Topcon, Zeiss und Optovue wurden Scans mit 3 × 3 mm und 6 × 6 mm Größe durchgeführt. Das Gerät von Heidelberg Engineering ermöglichte Scans im Format 4,3 × 1,5 mm. Die Vermessung der Fläche der FAZ erfolgte in den generierten Scans des superfiziellen Gefäßplexus und wurde zwischen den Geräten verglichen.

Resultate 24 Augen wurden in die Studie eingeschlossen. In den Scans mit verschiedenen Geräten zeigten sich in der Vermessung der FAZ signifikante Abweichungen. Das Zeiss OCT-A-Gerät lieferte den kleinsten Flächenwert (Mean 218,7 mm2), gefolgt von Optovue (Mean 229,6 mm2), Topcon (Mean 239,3 mm2) und dem OCT-A-Gerät von Heidelberg Engineering (Mean 250,4 mm2). Die Abweichung war statistisch signifikant zwischen: Heidelberg Engineering vs. Optovue (p < 0,001), Heidelberg Engineering vs. Zeiss (p < 0,001), Topcon vs. Zeiss (p < 0,001), und Optovue vs. Zeiss (p = 0,046). Bei dem Gerät von Optovue zeigte sich außerdem eine statistisch signifikante Abweichung der Messergebnisse zwischen den 3 × 3 mm (Mean 220 mm2) und 6 × 6 mm (Mean 239,3 mm2) großen Scans (p = 0,007).

Diskussion In der Vermessung der Fläche der FAZ zeigen gegenwärtige OCT-A-Geräte signifikante Abweichungen. Bei dem Optovue OCT-A-Gerät lassen sich signifikante Abweichungen in den Scans verschiedener Größe nachweisen. Da die Messdaten der verschiedenen Geräte nicht übereinstimmen, sollten Folgeuntersuchungen bei Patienten mit demselben Gerät erfolgen.

 
  • References

  • 1 Lipson BK, Yannuzzi LA. Complications of intravenous fluorescein injections. Int Ophthalmol Clin 1989; 29: 200-205
  • 2 Choi W, Mohler KJ, Potsaid B. et al. Choriocapillaris and choroidal microvasculature imaging with ultrahigh speed OCT angiography. PLoS One 2013; 8: e81499
  • 3 Kim DY, Fingler J, Zawadzki RJ. et al. Optical imaging of the chorioretinal vasculature in the living human eye. Proc Natl Acad Sci U S A 2013; 110: 14354-14359
  • 4 Schwartz DM, Fingler J, Kim DY. et al. Phase-variance optical coherence tomography: a technique for noninvasive angiography. Ophthalmology 2014; 121: 180-187
  • 5 Spaide RF, Klancnik jr. JM, Cooney MJ. Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography. JAMA Ophthalmol 2015; 133: 45-50
  • 6 Ruminski D, Sikorski BL, Bukowska D. et al. OCT angiography by absolute intensity difference applied to normal and diseased human retinas. Biomed Opt Expres 2015; 6: 2738-2754
  • 7 Munk MR, Giannakaki-Zimmermann H, Berger L. et al. OCT-angiography: a qualitative and quantitative comparison of 4 OCT-A devices. PLoS One 2017; 12: e0177059
  • 8 Tick S, Rossant F, Ghorbel I. et al. Foveal shape and structure in a normal population. Invest Ophthalmol Vis Sci 2011; 52: 5105-5110
  • 9 Lupidi M, Coscas F, Cagini C. et al. Automated quantitative analysis of retinal microvasculature in normal eyes on optical coherence tomography angiography. Am J Ophthalmol 2016; 169: 9-23
  • 10 Huang D, Jia Y, Gao SS. et al. Optical coherence tomography angiography using the Optovue device. Dev Ophthalmol 2016; 56: 6-12
  • 11 Rosenfeld PJ, Durbin MK, Roisman L. et al. ZEISS Angioplex spectral domain optical coherence tomography angiography: technical aspects. Dev Ophthalmol 2016; 56: 18-29
  • 12 Stanga PE, Tsamis E, Papayannis A. et al. Swept-Source Optical Coherence Tomography Angio (Topcon Corp, Japan): technology review. Dev Ophthalmol 2016; 56: 13-17
  • 13 Casselholmde Salles M, Kvanta A, Amrén U. et al. Optical coherence tomography angiography in central retinal vein occlusion: correlation between the foveal avascular zone and visual acuity. Invest Ophthalmol Vis Sci 2016; 57: OCT242-OCT246
  • 14 Wons J, Pfau M, Wirth MA. et al. Optical coherence tomography angiography of the foveal avascular zone in retinal vein occlusion. Ophthalmologica 2016; 235: 195-202
  • 15 Kang JW, Yoo R, Jo YH. et al. Correlation of microvascular structures on optical coherence tomography angiography with visual acuity in retinal vein occlusion. Retina 2017; 37: 1700-1709
  • 16 Seknazi D, Coscas F, Sellam A. et al. Optical coherence tomography angiography in retinal vein occlusion: correlations between macular vascular density, visual acuity, and peripheral nonperfusion area on fluorescein angiography. Retina 2017; 38: 1562-1570
  • 17 Early Treatment Diabetic Retinopathy Study Research Group. Grading diabetic retinopathy from stereoscopic color fundus photographs – an extension of the modified Airlie House classification. ETDRS report number 10. Ophthalmology 1991; 98: 786-806
  • 18 Ahmad Fadzil M, Ngah NF, George TM. et al. Analysis of foveal avascular zone in colour fundus images for grading of diabetic retinopathy severity. Conference proceedings. Conf Proc IEEE Eng Med Biol Soc 2010; 2010: 5632-5635
  • 19 Bresnick GH, Condit R, Syrjala S. et al. Abnormalities of the foveal avascular zone in diabetic retinopathy. Arch Ophthalmol 1984; 102: 1286-1293
  • 20 Freiberg FJ, Pfau M, Wons J. et al. Optical coherence tomography angiography of the foveal avascular zone in diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol 2016; 254: 1051-1058
  • 21 Takase N, Nozaki M, Kato A. et al. Enlargement of foveal avascular zone in diabetic eyes evaluated by en face optical coherence tomography angiography. Retina 2015; 35: 2377-2383
  • 22 Samara WA, Shahlaee A, Adam MK. et al. Quantification of diabetic macular ischemia using optical coherence tomography angiography and its relationship with visual acuity. Ophthalmology 2017; 124: 235-244
  • 23 Durbin MK, An L, Shemonski ND. et al. Quantification of retinal microvascular density in optical coherence tomographic angiography images in diabetic retinopathy. JAMA Ophthalmol 2017; 135: 370-376
  • 24 Gozlan J, Ingrand P, Lichtwitz O. et al. Retinal microvascular alterations related to diabetes assessed by optical coherence tomography angiography: a cross-sectional analysis. Medicine (Baltimore) 2017; 96: e6427
  • 25 Coscas G, Lupidi M, Coscas F. Heidelberg Spectralis optical coherence tomography angiography: technical aspects. Dev Ophthalmol 2016; 56: 1-5