Subscribe to RSS
DOI: 10.1055/a-0749-8947
Bildgebung in der Kornea mittels optischer Kohärenztomografie – historische Entwicklung und neueste technische Fortschritte
Cornea Imaging by Optical Coherence Tomography – Historical Aspects and Most Recent Technical DevelopmentsPublication History
eingereicht 13 August 2018
akzeptiert 19 September 2018
Publication Date:
19 December 2018 (online)

Zusammenfassung
Die optische Kohärenztomografie (OCT) hat seit ihrer Einführung für die retinale Bildgebung in den 90er-Jahren eine rasante Entwicklung genommen und die Ophthalmologie revolutioniert. Während sie zu Beginn nur zur Untersuchung der Retina zum Einsatz kam, wurden in der Zwischenzeit auch zahlreiche Systeme zur Beurteilung des vorderen Augenabschnitts entwickelt. Basierend auf der Detektion und Verarbeitung des vom Gewebe zurückreflektierten und gestreuten Lichts, eröffnete sie dem Ophthalmologen völlig neue Möglichkeiten zur Untersuchung der Strukturen des vorderen Augenabschnitts. Je nach technischer Umsetzung erlauben OCT-Systeme für den vorderen Augenabschnitt die präzise Vermessung einzelner Schichten der Kornea und des Kammerwinkels oder – in Form von ultrahoch auflösender OCT – die detailreiche Darstellung der Hornhautmorphologie mit nahezu histologischer Auflösung. Letztere könnte durch weitere technische Entwicklungen vor allem hinsichtlich der Erhöhung der Aufnahmegeschwindigkeit zu einem wesentlichen Werkzeug in der Differenzialdiagnose und Verlaufsbeobachtung verschiedenster Erkrankungen der Hornhaut werden, das auch neue Einsichten in die Pathophysiologie dieser Erkrankungen liefert.
Abstract
Since its introduction for retinal imaging in the early 1990s, optical coherence tomography (OCT) has undergone rapid development and has revolutionised ophthalmology. Although OCT was initially used mainly for the examination of the retina, numerous systems for the assessment of the anterior segment of the eye have now been developed. OCT is based on the detection and processing of the light back-scattered and back-reflected by the tissue, and provides completely new possibilities for the ophthalmologist to examine the structures of the anterior eye segment. Depending on the technical implementation, OCT systems for the anterior eye allow precise measurement of individual layers of the cornea and the chamber angle or – in the form of ultrahigh resolution OCT – the detailed visualisation of corneal morphology with near histological resolution. Through further technical developments, especially with respect to an increase in acquisition speeds, OCT has become an essential tool in the differential diagnosis and follow-up of various diseases of the cornea and might also provide new insights into their pathophysiology.
-
Literatur
- 1 Courville CB, Smolek MK, Klyce SD. Contribution of the ocular surface to visual optics. Exp Eye Res 2004; 78: 417-425
- 2 Doughty MJ, Zaman ML. Human corneal thickness and its impact on intraocular pressure measures: a review and meta-analysis approach. Surv Ophthalmol 2000; 44: 367-408
- 3 Qazi Y, Wong G, Monson B. et al.. Corneal transparency: genesis, maintenance and dysfunction. Brain Res Bull 2010; 81: 198-210 doi:10.1016/j.brainresbull.2009.05.019
- 4 Bizheva K, Haines L, Mason E. et al.. In vivo imaging and morphometry of the human pre-Descemetʼs layer and endothelium with ultrahigh-resolution optical coherence tomography. Invest Ophthalmol Vis Sci 2016; 57: 2782-2787 doi:10.1167/iovs.15-18936
- 5 Dua HS, Faraj LA, Said DG. et al.. Human corneal anatomy redefined: a novel pre-Descemetʼs layer (Duaʼs layer). Ophthalmology 2013; 120: 1778-1785 doi:10.1016/j.ophtha.2013.01.018
- 6 Fan R, Chan TC, Prakash G. et al.. Applications of corneal topography and tomography: a review. Clin Exp Ophthalmol 2018; 46: 133-146 doi:10.1111/ceo.13136
- 7 Silverman RH. Focused ultrasound in ophthalmology. Clin Ophthalmol 2016; 10: 1865-1875 doi:10.2147/OPTH.S99535
- 8 He M, Wang D, Jiang Y. Overview of ultrasound biomicroscopy. J Curr Glaucoma Pract 2012; 6: 25-53 doi:10.5005/jp-journals-10008-1105
- 9 Guthoff RF, Zhivov A, Stachs O. In vivo confocal microscopy, an inner vision of the cornea – a major review. Clin Exp Ophthalmol 2009; 37: 100-117 doi:10.1111/j.1442-9071.2009.02016.x
- 10 Zhivov A, Guthoff RF, Stachs O. In vivo confocal microscopy of the ocular surface: from bench to bedside and back again. Br J Ophthalmol 2010; 94: 1557-1558 doi:10.1136/bjo.2010.187906
- 11 Huang D, Swanson EA, Lin CP. et al.. Optical coherence tomography. Science 1991; 254: 1178-1181
- 12 Fercher AF, Hitzenberger CK, Drexler W. et al.. In vivo optical coherence tomography. Am J Ophthalmol 1993; 116: 113-114
- 13 Izatt JA, Hee MR, Swanson EA. et al.. Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography. Arch Ophthalmol 1994; 112: 1584-1589
- 14 Feng Y, Varikooty J, Simpson TL. Diurnal variation of corneal and corneal epithelial thickness measured using optical coherence tomography. Cornea 2001; 20: 480-483
- 15 Bechmann M, Thiel MJ, Neubauer AS. et al.. Central corneal thickness measurement with a retinal optical coherence tomography device versus standard ultrasonic pachymetry. Cornea 2001; 20: 50-54
- 16 Kalev-Landoy M, Day AC, Cordeiro MF. et al.. Optical coherence tomography in anterior segment imaging. Acta Ophthalmol Scand 2007; 85: 427-430 doi:10.1111/j.1600-0420.2007.00876.x
- 17 Leung CK, Chan WM, Ko CY. et al.. Visualization of anterior chamber angle dynamics using optical coherence tomography. Ophthalmology 2005; 112: 980-984 doi:10.1016/j.ophtha.2005.01.022
- 18 Radhakrishnan S, Rollins AM, Roth JE. et al.. Real-time optical coherence tomography of the anterior segment at 1310 nm. Arch Ophthalmol 2001; 119: 1179-1185
- 19 Haeusler G, Lindner MW. “Coherence radar” and “spectral radar” – new tools for dermatological diagnosis. J Biomed Opt 1998; 3: 21-31 doi:10.1117/1.429899
- 20 Wojtkowski M, Leitgeb R, Kowalczyk A. et al.. In vivo human retinal imaging by Fourier domain optical coherence tomography. J Biomed Opt 2002; 7: 457-463 doi:10.1117/1.1482379
- 21 Fercher AF, Hitzenberger CK, Kamp G. et al.. Measurement of intraocular distances by backscattering spectral interferometry. Opt Commun 1995; 117: 43-48 doi:10.1016/0030-4018(95)00119-S
- 22 Chinn SR, Swanson EA, Fujimoto JG. Optical coherence tomography using a frequency-tunable optical source. Opt Lett 1997; 22: 340-342
- 23 Leitgeb R, Hitzenberger C, Fercher A. Performance of fourier domain vs. time domain optical coherence tomography. Opt Express 2003; 11: 889-894
- 24 Fujimoto J, Swanson E. The development, commercialization, and impact of optical coherence tomography. Invest Ophthalmol Vis Sci 2016; 57: OCT1-OCT13 doi:10.1167/iovs.16-19963
- 25 Wieser W, Klein T, Adler DC. et al.. Extended coherence length megahertz FDML and its application for anterior segment imaging. Biomed Opt Express 2012; 3: 2647-2657 doi:10.1364/BOE.3.002647
- 26 Ang M, Baskaran M, Werkmeister RM. et al.. Anterior segment optical coherence tomography. Prog Retin Eye Res 2018; 66: 132-156 doi:10.1016/j.preteyeres.2018.04.002
- 27 Venkateswaran N, Galor A, Wang J. et al.. Optical coherence tomography for ocular surface and corneal diseases: a review. Eye Vis (Lond) 2018; 5: 13 doi:10.1186/s40662-018-0107-0
- 28 Bizheva K, Tan B, MacLelan B. et al.. Sub-micrometer axial resolution OCT for in-vivo imaging of the cellular structure of healthy and keratoconic human corneas. Biomed Opt Express 2017; 8: 800-812 doi:10.1364/BOE.8.000800
- 29 Yadav R, Kottaiyan R, Ahmad K. et al.. Epithelium and Bowmanʼs layer thickness and light scatter in keratoconic cornea evaluated using ultrahigh resolution optical coherence tomography. J Biomed Opt 2012; 17: 116010 doi:10.1117/1.JBO.17.11.116010
- 30 Werkmeister RM, Alex A, Kaya S. et al.. Measurement of tear film thickness using ultrahigh-resolution optical coherence tomography. Invest Ophthalmol Vis Sci 2013; 54: 5578-5583 doi:10.1167/iovs.13-11920
- 31 Aranha Dos Santos V, Schmetterer L, Gröschl M. et al.. In vivo tear film thickness measurement and tear film dynamics visualization using spectral domain optical coherence tomography. Opt Express 2015; 23: 21043-21063 doi:10.1364/OE.23.021043
- 32 Schmidl D, Schmetterer L, Witkowska KJ. et al.. Tear film thickness after treatment with artificial tears in patients with moderate dry eye disease. Cornea 2015; 34: 421-426 doi:10.1097/ICO.0000000000000358
- 33 Werkmeister RM, Sapeta S, Schmidl D. et al.. Ultrahigh-resolution OCT imaging of the human cornea. Biomed Opt Express 2017; 8: 1221-1239 doi:10.1364/BOE.8.001221
- 34 Reinstein DZ, Archer TJ, Gobbe M. Corneal epithelial thickness profile in the diagnosis of keratoconus. J Refract Surg 2009; 25: 604-610
- 35 Pircher N, Schwarzhans F, Holzer S. et al.. Distinguishing keratoconic eyes and healthy eyes using ultrahigh-resolution optical coherence tomography-based corneal epithelium thickness mapping. Am J Ophthalmol 2018; 189: 47-54 doi:10.1016/j.ajo.2018.02.006
- 36 Bata AM, Witkowska KJ, Wozniak PA. et al.. Effect of a matrix therapy agent on corneal epithelial healing after standard collagen cross-linking in patients with keratoconus: a randomized clinical trial. JAMA Ophthalmol 2016; 134: 1169-1176 doi:10.1001/jamaophthalmol.2016.3019
- 37 Fischak C, Klaus R, Werkmeister RM. et al.. Effect of topically administered chitosan-N-acetylcysteine on corneal wound healing in a rabbit model. J Ophthalmol 2017; 2017: 5192924 doi:10.1155/2017/5192924
- 38 Bizheva K, Tan B, MacLellan B. et al.. In-vivo imaging of the palisades of Vogt and the limbal crypts with sub-micrometer axial resolution optical coherence tomography. Biomed Opt Express 2017; 8: 4141-4151 doi:10.1364/BOE.8.004141
- 39 Vedana G, Villarreal jr. G, Jun AS. Fuchs endothelial corneal dystrophy: current perspectives. Clin Ophthalmol 2016; 10: 321-330 doi:10.2147/OPTH.S83467