Z Gastroenterol 2019; 57(07): 871-882
DOI: 10.1055/a-0755-2595
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Mikrobiom & NASH – enge Komplizen in der Progression von Fettlebererkrankungen

Microbiome & NASH – partners in crime driving progression of fatty liver disease
Alexander Wree
Medizinische Klinik III, Medizinische Fakultät der RWTH Aachen, Germany
,
Lukas Jonathan Geisler
Medizinische Klinik III, Medizinische Fakultät der RWTH Aachen, Germany
,
Frank Tacke
Medizinische Klinik III, Medizinische Fakultät der RWTH Aachen, Germany
› Author Affiliations
Further Information

Publication History

30 August 2018

04 October 2018

Publication Date:
09 July 2019 (online)

Zusammenfassung

Einhergehend mit der steigenden Prävalenz von Übergewicht, metabolischem Syndrom und Typ-2-Diabetes nehmen nicht-alkoholische Fettlebererkrankungen (NAFLD) stark zu und stellen eine große Herausforderung in der Gastroenterologie dar. Viele Studien konnten nachweisen, dass das Mikrobiom in einem engen Zusammenhang mit der Progression von ernährungsbedingten Krankheitsbildern, insbesondere auch von Fettlebererkrankungen, steht. Veränderungen in der Quantität und Qualität der Darmflora, allgemein als Dysbiose bezeichnet, bedingen veränderte Metabolisierung von Nahrungsmitteln, erhöhte Permeabilität der Darmbarriere („leaky gut“) und konsekutiv Entzündungsprozesse in der Leber. Dies begünstigt sowohl das Fortschreiten von Adipositas und metabolischen Störungen als auch von NAFLD zur nicht-alkoholischen Steatohepatitis (NASH), hepatischen Fibrose, Leberzirrhose und hepatozellulärem Karzinom (HCC). Wichtige molekulare Mechanismen beinhalten mikrobielle Stoffwechselprodukte, mikrobielle und endogene Signalstoffe (sogenannte PAMPs/DAMPs) sowie Gallensäuren. Essenzielle zelluläre Mechanismen umfassen immunologische Zellen in Darm und Leber, insbesondere Makrophagen und Kupffer-Zellen, sowie Darmepithelzellen und Hepatozyten als zentrale Regulatoren des Stoffwechsels. In dieser Übersicht wollen wir anhand aktueller wissenschaftlicher Arbeiten und klinischer Studien kurz auf die relevanten Spezies des humanen Mikrobioms eingehen, die mikrobielle Analytik erläutern, die wichtigsten molekularen Zusammenhänge zwischen Mikrobiom und NAFLD/NASH erklären und schlussendlich Möglichkeiten der Mikrobiom-modulierenden Therapie zur Behandlung von Fettlebererkrankungen darlegen.

Abstract

Along with the increasing prevalence of obesity, metabolic syndrome and type 2 diabetes, non-alcoholic fatty liver disease (NAFLD) is rapidly increasing and poses a major challenge for gastroenterologists. Many studies have demonstrated that the microbiome is closely associated with the progression of nutrition-related diseases, especially of fatty liver disease. Changes in the quantity and quality of the intestinal flora, commonly referred to as dysbiosis, result in altered food metabolism, increased permeability of the intestinal barrier (“leaky gut”) and consecutive inflammatory processes in the liver. This favors both the progression of obesity and metabolic disorders as well as NAFLD towards non-alcoholic steatohepatitis (NASH), hepatic fibrosis, cirrhosis and hepatocellular carcinoma (HCC). Important molecular mechanisms include microbial metabolites, microbial and endogenous signaling substances (so-called PAMPs/DAMPs) as well as bile acids. Essential cellular mechanisms include immune cells in the gut and liver, especially macrophages and Kupffer cells, as well as intestinal epithelial cells and hepatocytes as central regulators of metabolism. In this review article, we briefly summarize the relevant species of the human microbiome, describe the microbial analytics, explain the most important molecular relationships between microbiome and NAFLD/NASH, and finally the opportunities and challenges of microbiome-modulating therapy for the treatment of fatty liver disease.

 
  • Literatur

  • 1 Estes C, Anstee QM, Teresa Arias-LosteM. et al. Modeling NAFLD Disease Burden in China, France, Germany, Italy, Japan, Spain, United Kingdom, and United States for the period 2016–2030. J Hepatol 2018; 69: 896-904 . doi:10.1016/j.jhep.2018.05.036
  • 2 Tripathi A, Debelius J, Brenner DA. et al. The gut-liver axis and the intersection with the microbiome. Nature reviews Gastroenterology & hepatology 2018; 15: 397-411
  • 3 Adolph TE, Grander C, Moschen AR. et al. Liver-Microbiome Axis in Health and Disease. Trends in Immunology 2018;
  • 4 Roeb E, Steffen HM, Bantel H. et al. S2k-Leitlinie nicht alkoholische Fettlebererkrankungen. Zeitschrift für Gastroenterologie 2015; 53: 668-723
  • 5 Sender R, Fuchs S, Milo R. Are We Really Vastly Outnumbered? Revisiting the Ratio of Bacterial to Host Cells in Humans. Cell 2016; 164: 337-340
  • 6 Reyes A, Haynes M, Hanson N. et al. Viruses in the fecal microbiota of monozygotic twins and their mothers. Nature 2010; 466: 334-338
  • 7 Turnbaugh PJ, Ley RE, Hamady M. et al. The human microbiome project. Nature 2007; 449: 804-810
  • 8 Locey KJ, Lennon JT. Scaling laws predict global microbial diversity. Proc Natl Acad Sci USA 2016; 113: 5970
  • 9 Mokhtari Z, Gibson DL, Hekmatdoost A. Nonalcoholic Fatty Liver Disease, the Gut Microbiome, and Diet. Advances in Nutrition 2017; 8: 240-252
  • 10 Eckburg PB, Bik EM, Bernstein CN. et al. Diversity of the Human Intestinal Microbial Flora. Science (New York, NY) 2005; 308: 1635-1638
  • 11 Marsland B, Gollwitzer E. Host-microorganism interactions in lung diseases. Nat Rev Immunol 2014; 14: 827-835
  • 12 Schnabl B, Brenner DA. Interactions between the intestinal microbiome and liver diseases. Gastroenterology 2014; 146: 1513-1524
  • 13 Yang AM, Inamine T, Hochrath K. et al. Intestinal fungi contribute to development of alcoholic liver disease. J Clin Invest 2017; 127: 2829-2841
  • 14 Chen P, Torralba M, Tan J. et al. Supplementation of saturated long-chain fatty acids maintains intestinal eubiosis and reduces ethanol-induced liver injury in mice. Gastroenterology 2015; 148: 203-214, e216
  • 15 Hiergeist A, Gläsner J, Reischl U. et al. Analyses of Intestinal Microbiota: Culture versus Sequencing. ILAR Journal 2015; 56: 228-240
  • 16 Osman M-A, Neoh H-m, Ab MutalibN-S. et al. 16S rRNA Gene Sequencing for Deciphering the Colorectal Cancer Gut Microbiome: Current Protocols and Workflows. Frontiers in Microbiology 2018; 9: 767
  • 17 O’Toole PW, Flemer B. From Culture to High-Throughput Sequencing and Beyond: A Layperson’s Guide to the “Omics” and Diagnostic Potential of the Microbiome. The Gut Microbiome 2017; 46: 9-17
  • 18 Wang Z, Zolnik CP, Qiu Y. et al. Comparison of Fecal Collection Methods for Microbiome and Metabolomics Studies. Frontiers in cellular and infection microbiology 2018; 8: 301
  • 19 Stephen AM, Cummings JH. The microbial contribution to human faecal mass. J Med Microbiol 1980; 13: 45-56
  • 20 Franzosa EA, Hsu T, Sirota-Madi A. et al. Sequencing and beyond: integrating molecular ‘omics for microbial community profiling. Nature reviews Microbiology 2015; 13: 360-372
  • 21 Song SJ, Amir A, Metcalf JL. et al. Preservation Methods Differ in Fecal Microbiome Stability, Affecting Suitability for Field Studies. mSystems 2016; 1: e00021-00016
  • 22 Knight R, Vrbanac A, Taylor BC. et al. Best practices for analysing microbiomes. Nat Rev Microbiol 2018; 16: 410-422
  • 23 Hamady M, Knight R. Microbial community profiling for human microbiome projects: Tools, techniques, and challenges. Genome Research 2009; 19: 1141-1152
  • 24 Matsen FA, Kodner RB, Armbrust EV. pplacer: linear time maximum-likelihood and Bayesian phylogenetic placement of sequences onto a fixed reference tree. BMC Bioinformatics 2010; 11: 538
  • 25 Salipante SJ, Roach DJ, Kitzman JO. et al. Large-scale genomic sequencing of extraintestinal pathogenic Escherichia coli strains. Genome Research 2014; 25: 119-128
  • 26 Bosi E, Monk JM, Aziz RK. et al. Comparative genome-scale modelling of Staphylococcus aureus strains identifies strain-specific metabolic capabilities linked to pathogenicity. Proc Natl Acad Sci U S A 2016; 113: E3801-E3809
  • 27 Mouzaki M, Comelli EM, Arendt BM. et al. Intestinal microbiota in patients with nonalcoholic fatty liver disease. Hepatology 2013; 58: 120-127
  • 28 Stubbington MJT, Rozenblatt-Rosen O, Regev A. et al. Single-cell transcriptomics to explore the immune system in health and disease. Science (New York, NY) 2017; 358: 58-63
  • 29 Gawad C, Koh W, Quake SR. Single-cell genome sequencing: current state of the science. Nature reviews Genetics 2016; 17: 175-188
  • 30 Smirnov KS, Maier TV, Walker A. et al. Challenges of metabolomics in human gut microbiota research. International journal of medical microbiology IJMM 2016; 306: 266-279
  • 31 Vernocchi P, Del ChiericoF, Putignani L. Gut Microbiota Profiling: Metabolomics Based Approach to Unravel Compounds Affecting Human Health. Frontiers in Microbiology 2016; 7: 1144
  • 32 Duncan SH, Belenguer A, Holtrop G. et al. Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces. Appl Environ Microbiol 2007; 73: 1073-1078
  • 33 Ng M, Fleming T, Robinson M. et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 2014; 384: 766-781
  • 34 Haslam DW, James WP. Obesity. Lancet 2005; 366: 1197-1209
  • 35 Koeth RA, Wang Z, Levison BS. et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med 2013; 19: 576-585
  • 36 Qin J, Li Y, Cai Z. et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 2012; 490: 55-60
  • 37 Iida N, Dzutsev A, Stewart CA. et al. Commensal Bacteria Control Cancer Response to Therapy by Modulating the Tumor Microenvironment. Science 2013; 342: 967
  • 38 Turnbaugh PJ, Hamady M, Yatsunenko T. et al. A core gut microbiome in obese and lean twins. Nature 2009; 457: 480-484
  • 39 Ley RE, Turnbaugh PJ, Klein S. et al. Microbial ecology: human gut microbes associated with obesity. Nature 2006; 444: 1022-1023
  • 40 Jumpertz R, Le DS, Turnbaugh PJ. et al. Energy-balance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans. Am J Clin Nutr 2011; 94: 58-65
  • 41 Loomba R, Seguritan V, Li W. et al. Gut Microbiome-Based Metagenomic Signature for Non-invasive Detection of Advanced Fibrosis in Human Nonalcoholic Fatty Liver Disease. Cell metabolism 2017; 25: 1054-1062, e1055
  • 42 Schwiertz A, Taras D, Schäfer K. et al. Microbiota and SCFA in Lean and Overweight Healthy Subjects. Obesity 2012; 18: 190-195
  • 43 Kalliomaki M, Collado MC, Salminen S. et al. Early differences in fecal microbiota composition in children may predict overweight. Am J Clin Nutr 2008; 87: 534-538
  • 44 Trasande L, Blustein J, Liu M. et al. Infant antibiotic exposures and early-life body mass. International journal of obesity 2013; 37: 16-23
  • 45 Jiao N, Baker SS, Chapa-Rodriguez A. et al. Suppressed hepatic bile acid signalling despite elevated production of primary and secondary bile acids in NAFLD. Gut 2017;
  • 46 Kamada N, Nunez G. Regulation of the immune system by the resident intestinal bacteria. Gastroenterology 2014; 146: 1477-1488
  • 47 Karlsson F, Tremaroli V, Nielsen J. et al. Assessing the human gut microbiota in metabolic diseases. Diabetes 2013; 62: 3341-3349
  • 48 Jonsson AL, Backhed F. Role of gut microbiota in atherosclerosis. Nat Rev Cardiol 2017; 14: 79-87
  • 49 Fuchs CD, Traussnigg SA, Trauner M. Nuclear Receptor Modulation for the Treatment of Nonalcoholic Fatty Liver Disease. Semin Liver Dis 2016; 36: 69-86
  • 50 Zhu L, Baker SS, Gill C. et al. Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: A connection between endogenous alcohol and NASH. Hepatology 2012; 57: 601-609
  • 51 Wong VW-S, Tse C-H, Lam TT-Y. et al. Molecular Characterization of the Fecal Microbiota in Patients with Nonalcoholic Steatohepatitis – A Longitudinal Study. PLoS ONE 2013; 8: e62885
  • 52 Caussy C, Alquiraish MH, Nguyen P. et al. Optimal threshold of controlled attenuation parameter with MRI-PDFF as the gold standard for the detection of hepatic steatosis. Hepatology 2018; 67: 1348-1359
  • 53 Dumas M-E, Kinross J, Nicholson JK. Metabolic phenotyping and systems biology approaches to understanding metabolic syndrome and fatty liver disease. Gastroenterology 2014; 146: 46-62
  • 54 Dapito DH, Mencin A, Gwak G-Y. et al. Promotion of Hepatocellular Carcinoma by the Intestinal Microbiota and TLR4. Cancer Cell 2012; 21: 504-516
  • 55 Wree A, Kahraman A, Gerken G. et al. Obesity affects the liver – the link between adipocytes and hepatocytes. Digestion 2011; 83: 124-133
  • 56 Million M, Angelakis E, Paul M. et al. Comparative meta-analysis of the effect of Lactobacillus species on weight gain in humans and animals. Microbial Pathogenesis 2012; 53: 100-108
  • 57 Acharya C, Sahingur SE, Bajaj JS. Microbiota, cirrhosis, and the emerging oral-gut-liver axis. JCI Insight 2017; 2: e94416
  • 58 Gronkjaer LL. Periodontal disease and liver cirrhosis: A systematic review. SAGE open medicine 2015; 3: 2050312115601122
  • 59 Silva SantosPS, Fernandes KS, Gallottini MH. Assessment and management of oral health in liver transplant candidates. Journal of applied oral science : revista FOB 2012; 20: 241-245
  • 60 Yoneda M, Naka S, Nakano K. et al. Involvement of a periodontal pathogen, Porphyromonas gingivalis on the pathogenesis of non-alcoholic fatty liver disease. BMC gastroenterology 2012; 12: 16
  • 61 Qin N, Yang F, Li A. et al. Alterations of the human gut microbiome in liver cirrhosis. Nature 2014; 513: 59-64
  • 62 Brandl K, Kumar V, Eckmann L. Gut-liver axis at the frontier of host-microbial interactions. Am J Physiol Gastrointest Liver Physiol 2017; 312: G413-G419
  • 63 Saltzman ET, Palacios T, Thomsen M. et al. Intestinal Microbiome Shifts, Dysbiosis, Inflammation, and Non-alcoholic Fatty Liver Disease. Frontiers in Microbiology 2018; 9: 61
  • 64 Krenkel O, Tacke F. Liver macrophages in tissue homeostasis and disease. Nature reviews Immunology 2017; 17: 306-321
  • 65 Raman M, Ahmed I, Gillevet PM. et al. Fecal Microbiome and Volatile Organic Compound Metabolome in Obese Humans With Nonalcoholic Fatty Liver Disease. Clinical Gastroenterology and Hepatology 2013; 11: 868-875.e863
  • 66 Mehal WZ. The gut-liver axis: A busy two-way street. Hepatology 2012; 55: 1647-1649
  • 67 Traussnigg S, Kienbacher C, Halilbasic E. et al. Challenges and Management of Liver Cirrhosis: Practical Issues in the Therapy of Patients with Cirrhosis due to NAFLD and NASH. Digestive diseases 2015; 33: 598-607
  • 68 Weber SN, Bohner A, Dapito DH. et al. TLR4 Deficiency Protects against Hepatic Fibrosis and Diethylnitrosamine-Induced Pre-Carcinogenic Liver Injury in Fibrotic Liver. PLoS ONE 2016; 11: e0158819
  • 69 Philips CA, Pande A, Shasthry SM. et al. Healthy Donor Fecal Microbiota Transplantation in Steroid-Ineligible Severe Alcoholic Hepatitis: A Pilot Study. Clinical Gastroenterol Hepatol 2017; 15: 600-602
  • 70 Bajaj JS, Kassam Z, Fagan A. et al. Fecal Microbiota Transplant Using a Precision Medicine Approach is Safe, Associated with Lower Hospitalization Risk and Improved Cognitive Function in Recurrent Hepatic Encephalopathy. Gastroenterology 2017; 152: S906
  • 71 Leclercq S, Matamoros S, Cani PD. et al. Intestinal permeability, gut-bacterial dysbiosis, and behavioral markers of alcohol-dependence severity. Proc Natl Acad Sci U S A 2014; 111: E4485-E4493
  • 72 Mazagova M, Wang L, Anfora AT. et al. Commensal microbiota is hepatoprotective and prevents liver fibrosis in mice. The FASEB Journal 2014; 29: 1043-1055
  • 73 Schneider KM, Bieghs V, Heymann F. et al. CX3CR1 is a gatekeeper for intestinal barrier integrity in mice: Limiting steatohepatitis by maintaining intestinal homeostasis. Hepatology 2015; 62: 1405-1416
  • 74 Hartmann P, Seebauer CT, Mazagova M. et al. Deficiency of intestinal mucin-2 protects mice from diet-induced fatty liver disease and obesity. Am J Physiol Gastrointest Liver Physiol 2016; 310: G310-G322
  • 75 Compare D, Coccoli P, Rocco A. et al. Gut--liver axis: the impact of gut microbiota on non alcoholic fatty liver disease. Nutrition, metabolism, and cardiovascular diseases 2012; 22: 471-476
  • 76 Li DY, Yang M, Edwards S. et al. Nonalcoholic fatty liver disease: for better or worse, blame the gut microbiota?. Journal of parenteral and enteral nutrition 2013; 37: 787-793
  • 77 Miele L, Valenza V, La TorreG. et al. Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease. Hepatology 2009; 49: 1877-1887
  • 78 Le RoyT, Llopis M, Lepage P. et al. Intestinal microbiota determines development of non-alcoholic fatty liver disease in mice. Gut 2013; 62: 1787
  • 79 Carr RM, Reid AE. FXR agonists as therapeutic agents for non-alcoholic fatty liver disease. Current atherosclerosis reports 2015; 17: 500
  • 80 Molinaro A, Wahlstrom A, Marschall H-U. Role of Bile Acids in Metabolic Control. Trends in endocrinology and metabolism 2018; 29: 31-41
  • 81 Arab JP, Arrese M, Trauner M. Recent Insights into the Pathogenesis of Nonalcoholic Fatty Liver Disease. Annu Rev Pathol 2018; 13: 321-350
  • 82 Mouzaki M, Wang AY, Bandsma R. et al. Bile Acids and Dysbiosis in Non-Alcoholic Fatty Liver Disease. PLOS ONE 2016; 11: e0151829
  • 83 Arab JP, Karpen SJ, Dawson PA. et al. Bile acids and nonalcoholic fatty liver disease: Molecular insights and therapeutic perspectives. Hepatology 2017; 65: 350-362
  • 84 Wiest R, Albillos A, Trauner M. et al. Targeting the gut-liver axis in liver disease. J Hepatol 2017; 67: 1084-1103
  • 85 Bajaj JS, Barbara G, DuPont HL. et al. New concepts on intestinal microbiota and the role of the non-absorbable antibiotics with special reference to rifaximin in digestive diseases. Dig Liver Dis 2018; 50: 741-749
  • 86 Jiang ZD, Ke S, Dupont HL. Rifaximin-induced alteration of virulence of diarrhoea-producing Escherichia coli and Shigella sonnei. Int J Antimicrob Agents 2010; 35: 278-281
  • 87 Kang DJ, Kakiyama G, Betrapally NS. et al. Rifaximin Exerts Beneficial Effects Independent of its Ability to Alter Microbiota Composition. Clin Transl Gastroenterol 2016; 7: e187
  • 88 Gangarapu V, Ince AT, Baysal B. et al. Efficacy of rifaximin on circulating endotoxins and cytokines in patients with nonalcoholic fatty liver disease. Eur J Gastroenterol Hepatol 2015; 27: 840-845
  • 89 Abdel-Razik A, Mousa N, Shabana W. et al. Rifaximin in nonalcoholic fatty liver disease: hit multiple targets with a single shot. Eur J Gastroenterol Hepatol 2018;
  • 90 Letexier D, Diraison F, Beylot M. Addition of inulin to a moderately high-carbohydrate diet reduces hepatic lipogenesis and plasma triacylglycerol concentrations in humans. Am J Clin Nutr 2003; 77: 559-564
  • 91 Tilg H, Cani PD, Mayer EA. Gut microbiome and liver diseases. Gut 2016; 65: 2035-2044
  • 92 Aller R, De Luis DA, Izaola O. et al. Effect of a probiotic on liver aminotransferases in nonalcoholic fatty liver disease patients: a double blind randomized clinical trial. European review for medical and pharmacological sciences 2011; 15: 1090-1095
  • 93 Sawas T, Al HalabiS, Hernaez R. et al. Patients Receiving Prebiotics and Probiotics Before Liver Transplantation Develop Fewer Infections Than Controls: A Systematic Review and Meta-Analysis. Clinical gastroenterology and hepatology : the official clinical practice journal of the American Gastroenterological Association 2015; 13: 1567-1574 e1563 quiz e1143–1564
  • 94 Asgharian A, Askari G, Esmailzade A. et al. The Effect of Symbiotic Supplementation on Liver Enzymes, C-reactive Protein and Ultrasound Findings in Patients with Non-alcoholic Fatty Liver Disease: A Clinical Trial. International journal of preventive medicine 2016; 7: 59
  • 95 Duseja AK, Mehta M, Chhabra S. et al. Probiotic VSL#3 improves liver histology in patients with nonalcoholic fatty liver disease – A proof of concept study. Hepatology 2016; 64: 596A
  • 96 Ma Y-Y, Li L, Yu C-H. et al. Effects of probiotics on nonalcoholic fatty liver disease: a meta-analysis. World journal of gastroenterology 2013; 19: 6911-6918
  • 97 Alisi A, Bedogni G, Baviera G. et al. Randomised clinical trial: The beneficial effects of VSL#3 in obese children with non-alcoholic steatohepatitis. Alimentary pharmacology & therapeutics 2014; 39: 1276-1285
  • 98 Kobyliak N, Falalyeyeva T, Mykhalchyshyn G. et al. Effect of alive probiotic on insulin resistance in type 2 diabetes patients: Randomized clinical trial. Diabetes & metabolic syndrome 2018; 12: 617-624
  • 99 Sherf-Dagan S, Zelber-Sagi S, Zilberman-Schapira G. et al. Probiotics administration following sleeve gastrectomy surgery: a randomized double-blind trial. International journal of obesity 2018; 42: 147-155
  • 100 Behrouz V, Jazayeri S, Aryaeian N. et al. Effects of Probiotic and Prebiotic Supplementation on Leptin, Adiponectin, and Glycemic Parameters in Non-alcoholic Fatty Liver Disease: A Randomized Clinical Trial. Middle East Journal of Digestive Diseases 2017; 9: 150-157
  • 101 Buss C, Valle-Tovo C, Miozzo S. et al. Probiotics and synbiotics may improve liver aminotransferases levels in non-alcoholic fatty liver disease patients. Annals of hepatology 2014; 13: 482-488
  • 102 Malaguarnera M, Vacante M, Antic T. et al. Bifidobacterium longum with fructo-oligosaccharides in patients with non alcoholic steatohepatitis. Digestive diseases and sciences 2012; 57: 545-553
  • 103 Eslamparast T, Poustchi H, Zamani F. et al. Synbiotic supplementation in nonalcoholic fatty liver disease: a randomized, double-blind, placebo-controlled pilot study. Am J Clin Nutr 2014; 99: 535-542
  • 104 McDonald LC, Gerding DN, Johnson S. et al. Clinical Practice Guidelines for Clostridium difficile Infection in Adults and Children: 2017 Update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA). Clinical infectious diseases : an official publication of the Infectious Diseases Society of America 2018; 66: e1-e48
  • 105 Cammarota G, Ianiro G, Tilg H. et al. European consensus conference on faecal microbiota transplantation in clinical practice. Gut 2017; 66: 569-580
  • 106 Bundesminesterium für Justiz und Verbraucherschutz. Arzneimittelgesetz In. Art. 1 G v. 18.7.2017 I 2757 ed. 2017
  • 107 Hagel S, Fischer A, Ehlermann P. et al. Fecal Microbiota Transplant in Patients With Recurrent Clostridium Difficile Infection. Dtsch Arztebl International 2016; 113: 583-589
  • 108 Schneider KM, Wirtz TH, Kroy D. et al. Successful Fecal Microbiota Transplantation in a Patient with Severe Complicated Clostridium difficile Infection after Liver Transplantation. Case Reports in Gastroenterology 2018; 12: 76-84
  • 109 Philips CA, Pande A, Shasthry SM. et al. Healthy Donor Fecal Microbiota Transplantation in Steroid-Ineligible Severe Alcoholic Hepatitis: A Pilot Study. Clinical gastroenterology and hepatology: the official clinical practice journal of the American Gastroenterological Association 2017; 15: 600-602
  • 110 Jamwal K, Philips C, Pande A. et al. Fecal microbiota transplantation (FMT) improves outcome and survival in steroid ineligible severe alcoholic hepatitis–A randomized control trial. Hepatology 2016; 64: 706A
  • 111 Alireza M, Reena S. Successful outcomes of fecal microbiota transplantation in patients with chronic liver disease. Hepatology 2016; 64: 1017A
  • 112 Lee CH, Steiner T, Petrof EO. et al. Frozen vs Fresh Fecal Microbiota Transplantation and Clinical Resolution of Diarrhea in Patients With Recurrent Clostridium difficile Infection: A Randomized Clinical Trial. Jama 2016; 315: 142-149
  • 113 Cammarota G, Ianiro G, Gasbarrini A. Fecal microbiota transplantation for the treatment of Clostridium difficile infection: a systematic review. Journal of clinical gastroenterology 2014; 48: 693-702
  • 114 Kassam Z, Lee CH, Yuan Y. et al. Fecal microbiota transplantation for Clostridium difficile infection: systematic review and meta-analysis. The American journal of gastroenterology 2013; 108: 500-508
  • 115 Drekonja D, Reich J, Gezahegn S. et al. Fecal Microbiota Transplantation for Clostridium difficile Infection: A Systematic Review. Annals of internal medicine 2015; 162: 630-638
  • 116 van Nood E, Vrieze A, Nieuwdorp M. et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. The New England journal of medicine 2013; 368: 407-415