Horm Metab Res 2018; 50(12): 863-870
DOI: 10.1055/a-0755-7927
Review
© Georg Thieme Verlag KG Stuttgart · New York

Central Tolerance Mechanisms to TSHR in Graves’ Disease: Contributions to Understand the Genetic Association

Ricardo Pujol-Borrell
1   Immunology Division, Hospital Universitari Vall d’Hebron (HUVH), Barcelona, Catalonia, Spain
2   Diagnostic Immunology Group, Vall d’Hebron Research Institute (VHIR), Barcelona, Catalonia, Spain
3   Department of Cell Biology, Physiology and Immunology, Universitat Autonòma de Barcelona, Bellaterra, Catalonia, Spain
,
Daniel Álvarez-Sierra
2   Diagnostic Immunology Group, Vall d’Hebron Research Institute (VHIR), Barcelona, Catalonia, Spain
3   Department of Cell Biology, Physiology and Immunology, Universitat Autonòma de Barcelona, Bellaterra, Catalonia, Spain
,
Dolores Jaraquemada
3   Department of Cell Biology, Physiology and Immunology, Universitat Autonòma de Barcelona, Bellaterra, Catalonia, Spain
,
Ana Marín-Sánchez
3   Department of Cell Biology, Physiology and Immunology, Universitat Autonòma de Barcelona, Bellaterra, Catalonia, Spain
,
Roger Colobran
1   Immunology Division, Hospital Universitari Vall d’Hebron (HUVH), Barcelona, Catalonia, Spain
2   Diagnostic Immunology Group, Vall d’Hebron Research Institute (VHIR), Barcelona, Catalonia, Spain
3   Department of Cell Biology, Physiology and Immunology, Universitat Autonòma de Barcelona, Bellaterra, Catalonia, Spain
› Author Affiliations
Further Information

Publication History

received 31 July 2018

accepted 02 October 2018

Publication Date:
05 November 2018 (online)

Abstract

In the last 3 years, the association of thyrotropin receptor gene (TSHR) variations to Graves’ disease (GD) has been confirmed. It is now well established that a 30 Kb region of intron 1 of the TSHR gene is linked to GD predisposition. Elucidating the mechanism(s) by which these polymorphisms confer susceptibility is difficult but would constitute an important advance in endocrine autoimmunity in general. Two hypotheses, both postulating TSHR gene regulatory mechanisms, are discussed. One postulates differential level of expression in the thymus, involving central tolerance. The other postulates a shift in TSHR differential splicing leading to the production of soluble proteins that will have easy access to antigen presenting cells, so it is focused in peripheral tolerance. A combination of the 2 hypothesis is feasible, especially under the light of recent evidence that have identified epigenetic factors acting on TSHR intron 1.

 
  • References

  • 1 Pujol-Borrell R, Giménez-Barcons M, Marín-Sánchez A, Colobran R. Genetics of graves’ disease: Special focus on the role of TSHR gene. Horm Metab Res 2015; 47: 753-766
  • 2 Gong J, Jiang S-J, Wang D-K, Dong H, Chen G, Fang K, Cui J-R, Lu F-E. Association of polymorphisms of rs179247 and rs12101255 in thyroid stimulating hormone receptor intron 1 with an increased risk of Graves’ disease: A meta-analysis. J Huazhong Univ Sci Technolog Med Sci 2016; 36: 473-479
  • 3 Xiong H, Wu M, Yi H, Wang X, Wang Q, Nadirshina S, Zhou X, Liu X. Genetic associations of the thyroid stimulating hormone receptor gene with graves diseases and graves ophthalmopathy: A meta-analysis. Sci Rep 2016; 6: 30356
  • 4 Qian W, Xu K, Jia W, Lan L, Zheng X, Yang X, Cui D. Association between TSHR gene polymorphism and the risk of Graves’ disease: a meta-analysis. J Biomed Res 2016; 30: 466-475
  • 5 Stefan M, Faustino LC. Genetics of thyroid-stimulating hormone receptor-relevance for autoimmune thyroid disease. Front Endocrinol 2017; 8: 57
  • 6 Stefan M, Wei C, Lombardi A, Li CW, Concepcion ES, Inabnet WB, Owen R, Zhang W, Tomer Y. Genetic-epigenetic dysregulation of thymic TSH receptor gene expression triggers thyroid autoimmunity. Proc Natl Acad Sci U S A 2014; 111: 12562-12567
  • 7 Miller JFAP. The golden anniversary of the thymus. Nat Rev Immunol 2011; 11: 489-495
  • 8 Kappler JW, Roehm N, Marrack P. T cell tolerance by clonal elimination in the thymus. Cell 1987; 49: 273-280
  • 9 Uematsu Y, Ryser S, Dembić Z, Borgulya P, Krimpenfort P, Berns A, von Boehmer H, Steinmetz M. In transgenic mice the introduced functional T cell receptor beta gene prevents expression of endogenous beta genes. Cell 1988; 52: 831-841
  • 10 Raviola E, Karnovsky MJ. Evidence for a blood-thymus barrier using electron-opaque tracers. J Exp Med 1972; 136: 466-498
  • 11 Wu B, Ohno N, Saitoh Y, Bai Y, Huang Z, Terada N, Ohno S. Immuno- and enzyme-histochemistry of HRP for demonstration of blood vessel permeability in mouse thymic tissues by „in vivo cryotechnique“. Acta Histochem Cytochem 2014; 47: 273-288
  • 12 Atibalentja DF, Byersdorfer CA, Unanue ER. Thymus-blood protein interactions are highly effective in negative selection and regulatory T cell induction. J Immunol 2009; 183: 7909-7918
  • 13 Klein L, Kyewski B, Allen PM, Hogquist KA. Positive and negative selection of the T cell repertoire: what thymocytes see (and don’t see). Nat Rev Immunol 2014; 14: 377-391
  • 14 Jolicoeur C, Hanahan D, Smith KM. T-cell tolerance toward a transgenic beta-cell antigen and transcription of endogenous pancreatic genes in thymus. Proc Natl Acad Sci USA 1994; 91: 6707-6711
  • 15 Antonia SJ, Geiger T, Miller J, Flavell RA. Mechanisms of immune tolerance induction through the thymic expression of a peripheral tissue-specific protein. Int Immunol 1995; 7: 715-725
  • 16 Hanahan D. Peripheral-antigen-expressing cells in thymic medulla: factors in self-tolerance and autoimmunity. Curr Opin Immunol 1998; 10: 656-662
  • 17 Londei M, Bottazzo GF, Feldmann M. Human T-cell clones from autoimmune thyroid glands: specific recognition of autologous thyroid cells. Science 1985; 228: 85-89
  • 18 Martin R, Howell MD, Jaraquemada D, Flerlage M, Richert J, Brostoff S, Long EO, McFarlin DE, McFarland HF. A myelin basic protein peptide is recognized by cytotoxic T cells in the context of four HLA-DR types associated with multiple sclerosis. J Exp Med 1991; 173: 19-24
  • 19 Roura-Mir C, Catálfamo M, Sospedra M, Alcalde L, Pujol-Borrell R, Jaraquemada D. Single-cell analysis of intrathyroidal lymphocytes shows differential cytokine expression in hashimoto’s and graves’ disease. Eur J Immunol 1997; 27: 3290-3302
  • 20 Codina-Busqueta E, Scholz E, Muñoz-Torres PM, Roura-Mir C, Costa M, Xufré C, Planas R, Vives-Pi M, Jaraquemada D, Martí M. TCR bias of in vivo expanded T cells in pancreatic islets and spleen at the onset in human type 1 diabetes. J Immunol 2011; 186: 3787-3797
  • 21 Durinovic-Belló I, Gersuk VH, Ni C, Wu R, Thorpe J, Jospe N, Sanda S, Greenbaum CJ, Nepom GT. Avidity-dependent programming of autoreactive T cells in T1D. PloS One 2014; 9: e98074
  • 22 Sospedra M, Ferrer-Francesch X, Domínguez O, Juan M, Foz-Sala M, Pujol-Borrell R. Transcription of a broad range of self-antigens in human thymus suggests a role for central mechanisms in tolerance toward peripheral antigens. J Immunol 1998; 161: 5918-5929
  • 23 Pugliese A, Zeller M, Fernandez A, Zalcberg LJ, Bartlett RJ, Ricordi C, Pietropaolo M, Eisenbarth GS, Bennett ST, Patel DD. The insulin gene is transcribed in the human thymus and transcription levels correlated with allelic variation at the INS VNTR-IDDM2 susceptibility locus for type 1 diabetes. Nat Genet 1997; 15: 293-297
  • 24 Vafiadis P, Bennett ST, Todd JA, Nadeau J, Grabs R, Goodyer CG, Wickramasinghe S, Colle E, Polychronakos C. Insulin expression in human thymus is modulated by INS VNTR alleles at the IDDM2 locus. Nat Genet 1997; 15: 289-292
  • 25 Derbinski J, Schulte A, Kyewski B, Klein L. Promiscuous gene expression in medullary thymic epithelial cells mirrors the peripheral self. Nat Immunol 2001; 2: 1032-1039
  • 26 Gotter J, Brors B, Hergenhahn M, Kyewski B. Medullary epithelial cells of the human thymus express a highly diverse selection of tissue-specific genes colocalized in chromosomal clusters. J Exp Med 2004; 199: 155-166
  • 27 Derbinski J, Pinto S, Rösch S, Hexel K, Kyewski B. Promiscuous gene expression patterns in single medullary thymic epithelial cells argue for a stochastic mechanism. Proc Natl Acad Sci USA 2008; 105: 657-662
  • 28 Sansom SN, Shikama-Dorn N, Zhanybekova S, Nusspaumer G, Macaulay IC, Deadman ME, Heger A, Ponting CP, Holländer GA. Population and single-cell genomics reveal the Aire dependency, relief from Polycomb silencing, and distribution of self-antigen expression in thymic epithelia. Genome Res 2014; 24: 1918-1931
  • 29 St-Pierre C, Trofimov A, Brochu S, Lemieux S, Perreault C. Differential features of aire-induced and aire-independent promiscuous gene expression in thymic epithelial cells. J Immunol 2015; 195: 498-506
  • 30 Alvarez I, Collado JA, Colobran R, Carrascal M, Ciudad MT, Canals F, James EA, Kwok WW, Gärtner M, Kyewski B, Pujol-Borrell R, Jaraquemada D. Central T cell tolerance: Identification of tissue-restricted autoantigens in the thymus HLA-DR peptidome. J Autoimmun 2015; 60: 12-19
  • 31 Finnish-German APECED Consortium. An autoimmune disease, APECED, caused by mutations in a novel gene featuring two PHD-type zinc-finger domains. Nat Genet 1997; 17: 399-403
  • 32 Nagamine K, Peterson P, Scott HS, Kudoh J, Minoshima S, Heino M, Krohn KJ, Lalioti MD, Mullis PE, Antonarakis SE, Kawasaki K, Asakawa S, Ito F, Shimizu N. Positional cloning of the APECED gene. Nat Genet 1997; 17: 393-398
  • 33 Ramsey C, Winqvist O, Puhakka L, Halonen M, Moro A, Kämpe O, Eskelin P, Pelto-Huikko M, Peltonen L. Aire deficient mice develop multiple features of APECED phenotype and show altered immune response. Hum Mol Genet 2002; 11: 397-409
  • 34 Anderson MS, Venanzi ES, Klein L, Chen Z, Berzins SP, Turley SJ, von Boehmer H, Bronson R, Dierich A, Benoist C, Mathis D. Projection of an immunological self shadow within the thymus by the aire protein. Science 2002; 298: 1395-1401
  • 35 Gardner JM, Devoss JJ, Friedman RS, Wong DJ, Tan YX, Zhou X, Johannes KP, Su MA, Chang HY, Krummel MF, Anderson MS. Deletional tolerance mediated by extrathymic aire-expressing cells. Science 2008; 321: 843-847
  • 36 Gardner JM, Fletcher AL, Anderson MS, Turley SJ. AIRE in the thymus and beyond. Curr Opin Immunol 2009; 21: 582-589
  • 37 Bansal K, Yoshida H, Benoist C, Mathis D. The transcriptional regulator Aire binds to and activates super-enhancers. Nat Immunol 2017; 18: 263-273
  • 38 Guha M, Saare M, Maslovskaja J, Kisand K, Liiv I, Haljasorg U, Tasa T, Metspalu A, Milani L, Peterson P. DNA breaks and chromatin structural changes enhance the transcription of autoimmune regulator target genes. J Biol Chem 2017; 292: 6542-6554
  • 39 Takaba H, Morishita Y, Tomofuji Y, Danks L, Nitta T, Komatsu N, Kodama T, Takayanagi H. Fezf2 orchestrates a thymic program of self-antigen expression for immune tolerance. Cell 2015; 163: 975-987
  • 40 Takaba H, Takayanagi H. The mechanisms of t cell selection in the thymus. Trends Immunol 2017; 38: 805-816
  • 41 Colobran R, Giménez-Barcons M, Marín-Sánchez A, Porta-Pardo E, Pujol-Borrell R. AIRE genetic variants and predisposition to polygenic autoimmune disease: The case of Graves’ disease and a systematic literature review. Hum Immunol 2016; 77: 643-651
  • 42 Murakami M, Hosoi Y, Negishi T, Kamiya Y, Miyashita K, Yamada M, Iriuchijima T, Yokoo H, Yoshida I, Tsushima Y, Mori M. Thymic hyperplasia in patients with Graves’ disease. Identification of thyrotropin receptors in human thymus. J Clin Invest 1996; 98: 2228-2234
  • 43 Kakinuma A, Nagayama Y. Multiple messenger ribonucleic acid transcripts and revised gene organization of the human TSH receptor. Endocr J 2002; 49: 175-180
  • 44 Colobran R, Armengol MDP, Faner R, Gärtner M, Tykocinski L-O, Lucas A, Ruiz M, Juan M, Kyewski B, Pujol-Borrell R. Association of an SNP with intrathymic transcription of TSHR and Graves’ disease: a role for defective thymic tolerance. Hum Mol Genet 2011; 20: 3415-3423
  • 45 Dechairo BM, Zabaneh D, Collins J, Brand O, Dawson GJ, Green AP, Mackay I, Franklyn JA, Connell JM, Wass JAH, Wiersinga WM, Hegedus L, Brix T, Robinson BG, Hunt PJ, Weetman AP, Carey AH, Gough SC. Association of the TSHR gene with Graves’ disease: the first disease specific locus. Eur J Hum Genet 2005; 13: 1223-1230
  • 46 Brand OJ, Barrett JC, Simmonds MJ, Newby PR, McCabe CJ, Bruce CK, Kysela B, Carr-Smith JD, Brix T, Hunt PJ, Wiersinga WM, Hegedüs L, Connell J, Wass JAH, Franklyn JA, Weetman AP, Heward JM, Gough SCL. Association of the thyroid stimulating hormone receptor gene (TSHR) with Graves’ disease. Hum Mol Genet 2009; 18: 1704-1713
  • 47 Giménez-Barcons M, Colobran R, Gómez-Pau A, Marín-Sánchez A, Casteràs A, Obiols G, Abella R, Fernández-Doblas J, Tonacchera M, Lucas-Martín A, Pujol-Borrell R. Graves’ disease TSHR-stimulating antibodies (TSAbs) induce the activation of immature thymocytes: a clue to the riddle of TSAbs generation?. J Immunol 2015; 194: 4199-4206
  • 48 van der Weerd K, van Hagen PM, Schrijver B, Heuvelmans SJWM, Hofland LJ, Swagemakers SMA, Bogers AJJC, Dik WA, Visser TJ, van Dongen JJM, van der Lelij A-J, Staal FJT. Thyrotropin acts as a T-cell developmental factor in mice and humans. Thyroid Off J Am Thyroid Assoc 2014; 24: 1051-1061
  • 49 Klein L, Klugmann M, Nave KA, Tuohy VK, Kyewski B. Shaping of the autoreactive T-cell repertoire by a splice variant of self protein expressed in thymic epithelial cells. Nat Med 2000; 6: 56-61
  • 50 Diez J, Park Y, Zeller M, Brown D, Garza D, Ricordi C, Hutton J, Eisenbarth GS, Pugliese A. Differential splicing of the IA-2 mRNA in pancreas and lymphoid organs as a permissive genetic mechanism for autoimmunity against the IA-2 type 1 diabetes autoantigen. Diabetes 2001; 50: 895-900
  • 51 Raposo B, Merky P, Lundqvist C, Yamada H, Urbonaviciute V, Niaudet C, Viljanen J, Kihlberg J, Kyewski B, Ekwall O, Holmdahl R, Bäcklund J. T cells specific for post-translational modifications escape intrathymic tolerance induction. Nat Commun 2018; 9: 353
  • 52 Rapoport B, McLachlan SM. TSH receptor cleavage into subunits and shedding of the a-subunit; A molecular and clinical perspective. Endocr Rev 2016; 37: 114-134
  • 53 Nakahara M, Johnson K, Eckstein A, Taguchi R, Yamada M, Abiru N, Nagayama Y. Adoptive transfer of antithyrotropin receptor (TSHR) autoimmunity from TSHR knockout mice to athymic nude mice. Endocrinology 2012; 153: 2034-2042
  • 54 Schlüter A, Horstmann M, Diaz-Cano S, Plöhn S, Stähr K, Mattheis S, Oeverhaus M, Lang S, Flögel U, Berchner-Pfannschmidt U, Eckstein A, Banga JP. Genetic immunization with mouse thyrotrophin hormone receptor plasmid breaks self-tolerance for a murine model of autoimmune thyroid disease and Graves’ orbitopathy. Clin Exp Immunol 2018; 191: 255-267
  • 55 Furmaniak J, Sanders J, Núñez Miguel R, Rees Smith B. Mechanisms of action of TSHR autoantibodies. Horm Metab Res 2015; 47: 735-752
  • 56 Morshed SA, Davies TF. Graves’ disease mechanisms: The role of stimulating, blocking, and cleavage region tsh receptor antibodies. Horm Metab Res 2015; 47: 727-734
  • 57 Sanders P, Young S, Sanders J, Kabelis K, Baker S, Sullivan A, Evans M, Clark J, Wilmot J, Hu X, Roberts E, Powell M, Núñez Miguel R, Furmaniak J, Rees Smith B. Crystal structure of the TSH receptor (TSHR) bound to a blocking-type TSHR autoantibody. J Mol Endocrinol 2011; 46: 81-99
  • 58 Inaba H, Martin W, De Groot AS, Qin S, De Groot LJ. Thyrotropin receptor epitopes and their relation to histocompatibility leukocyte antigen-DR molecules in Graves’ disease. J Clin Endocrinol Metab 2006; 91: 2286-2294
  • 59 Allelein S, Kuebart A, Haase M, Dringenberg T, Schmid C, Schott M, Ehlers M. Measurement of TSH receptor epitope-specific T Cells in graves’ disease. Horm Metab Res 2016; 48: 862-864
  • 60 Inaba H, De Groot LJ, Akamizu T. Thyrotropin receptor epitope and human leukocyte antigen in graves’ disease. Front Endocrinol 2016; 7: 120
  • 61 Inaba H, Martin W, Ardito M, De Groot AS, De Groot LJ. The role of glutamic or aspartic acid in position four of the epitope binding motif and thyrotropin receptor-extracellular domain epitope selection in Graves’ disease. J Clin Endocrinol Metab 2010; 95: 2909-2916
  • 62 Pichurin P, Pham N, David CS, Rapoport B, McLachlan SM. HLA-DR3 transgenic mice immunized with adenovirus encoding the thyrotropin receptor: T cell epitopes and functional analysis of the CD40 Graves’ polymorphism. Thyroid 2006; 16: 1221-1227
  • 63 Yang J, Danke NA, Berger D, Reichstetter S, Reijonen H, Greenbaum C, Pihoker C, James EA, Kwok WW. Islet-specific glucose-6-phosphatase catalytic subunit-related protein-reactive CD4+ T cells in human subjects. J Immunol 2006; 176: 2781-2789
  • 64 Yang J, Wen X, Xu H, Torres-Chinn N, Speake C, Greenbaum CJ, Nepom GT, Kwok WW, Antigen-Specific T. Cell analysis reveals that active immune responses to β cell antigens are focused on a unique set of epitopes. J Immunol 2017; 199: 91-96
  • 65 Chen C-R, Pichurin P, Nagayama Y, Latrofa F, Rapoport B, McLachlan SM. The thyrotropin receptor autoantigen in Graves disease is the culprit as well as the victim. J Clin Invest 2003; 111: 1897-1904
  • 66 Chazenbalk GD, Pichurin P, Chen C-R, Latrofa F, Johnstone AP, McLachlan SM, Rapoport B. Thyroid-stimulating autoantibodies in Graves disease preferentially recognize the free A subunit, not the thyrotropin holoreceptor. J Clin Invest 2002; 110: 209-217
  • 67 Brix TH, Kyvik KO, Christensen K, Hegedüs L. Evidence for a major role of heredity in Graves’ disease: a population-based study of two danish twin cohorts. J Clin Endocrinol Metab 2001; 86: 930-934
  • 68 Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, McCarthy MI, Ramos EM, Cardon LR, Chakravarti A, Cho JH, Guttmacher AE, Kong A, Kruglyak L, Mardis E, Rotimi CN, Slatkin M, Valle D, Whittemore AS, Boehnke M, Clark AG, Eichler EE, Gibson G, Haines JL, Mackay TFC, McCarroll SA, Visscher PM. Finding the missing heritability of complex diseases. Nature 2009; 461: 747-753
  • 69 Trerotola M, Relli V, Simeone P, Alberti S. Epigenetic inheritance and the missing heritability. Hum Genom 2015; 9: 17
  • 70 Sategna-Guidetti C, Bruno M, Mazza E, Carlino A, Predebon S, Tagliabue M, Brossa C. Autoimmune thyroid diseases and coeliac disease. Eur J Gastroenterol Hepatol 1998; 10: 927-931
  • 71 Custro N, Montalto G, Scafidi V, Soresi M, Gallo S, Tripi S, Notarbartolo A. Prospective study on thyroid autoimmunity and dysfunction related to chronic hepatitis C and interferon therapy. J Endocrinol Invest 1997; 20: 374-380
  • 72 Tran HA, Jones TL, Ianna EA, Reeves GE. The natural history of interferon-α induced thyroiditis in chronic hepatitis c patients: a long term study. Thyroid Res 2011; 4: 2
  • 73 Ruiz-Riol M, Barnils M, del PA, Colobran Oriol R, Pla AS, Borràs Serres F-E, Lucas-Martin A, Martínez Cáceres EM, Pujol-Borrell R. Analysis of the cumulative changes in Graves’ disease thyroid glands points to IFN signature, plasmacytoid DCs and alternatively activated macrophages as chronicity determining factors. J Autoimmun 2011; 36: 189-200
  • 74 Limbach M, Saare M, Tserel L, Kisand K, Eglit T, Sauer S, Axelsson T, Syvänen A-C, Metspalu A, Milani L, Peterson P. Epigenetic profiling in CD4+ and CD8+ T cells from Graves’ disease patients reveals changes in genes associated with T cell receptor signaling. J Autoimmun 2016; 67: 46-56