Drug Res (Stuttg) 2019; 69(07): 365-373
DOI: 10.1055/a-0806-7207
Review
© Georg Thieme Verlag KG Stuttgart · New York

Mechanistic Pathways of ATP Sensitive Potassium Channels Referring to Cardio-Protective Effects and Cellular Functions

Vishal Kumar Vishwakarma
1   Department of Pharmacology, R.R.S College of Pharmacy, Amethi, Uttar Pradesh, India
,
Prabhat Kumar Upadhyay
2   Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
,
Hridaya Shanker Chaurasiya
1   Department of Pharmacology, R.R.S College of Pharmacy, Amethi, Uttar Pradesh, India
,
Ritesh Kumar Srivasatav
3   Faculty of Pharmacy, Kamla Nehru Institute of Management and Technology, Sultanpur, India
,
Tarique Mahmood Ansari
4   Department of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
,
Vivek Srivastava
1   Department of Pharmacology, R.R.S College of Pharmacy, Amethi, Uttar Pradesh, India
› Institutsangaben
Weitere Informationen

Publikationsverlauf

received 04. Oktober 2018

accepted 23. November 2018

Publikationsdatum:
04. Januar 2019 (online)

Abstract

A study of potassium channels correlates the fundamentals of mechanistic pathways and various physiological functions. The knowledge of these pathways provides the background, how to determine unit cell functions and to affect cardio protection. ATP sensitive potassium channels adjust excitability of membrane and functions as per metabolic status of cell. A lot of energy consumption primarily occurred in skeletal muscles which also express high number of potassium channels. The increase in calcium release and high heat production is occurred due to loss of potassium channels. Such type of mediations determines metabolic changes and energy required in the dissipation. IPC reduces infarct size in anesthetized mice. In ischemic-reperfusion, pressure in left ventricle was watched while contractile power recovery did not happen. It was seen that elements of intact potassium channel are fundamental for Ischemic preconditioning (IPC). If more prominent is enactment of potassium channels and their cardiologic effects create high heart rate. All the more as of late, it has been suggested that mitochondrial ATP sensitive potassium channels are critical as closing stage effectors which trigger IPC as opposed to sarcolemmal potassium channels. Nevertheless, the importance of the potassium channels reconsidered in cardio-protection in present findings. These discoveries recommend that potassium channels in the adjusting ischemic-reperfusion damage in mice. The heart rate of the mouse occurred during ischemia; enhance watchful extrapolation applied to larger warm blooded animals.

 
  • References

  • 1 De Wet H, Proks P. Molecular action of sulphonylureas on KATP channels: A real partnership between drugs and nucleotides. Biochem Soc Trans 2015; 43: 901-907
  • 2 MacIntosh BR, Holash RJ, Renaud JM. Skeletal muscle fatigue-regulation of excitation-contraction coupling to avoid metabolic catastrophe. J Cell Sci 2012; 125: 2105-2114
  • 3 Flagg TP, Enkvetchakul D, Koster JC. et al. Muscle KATP channels: Recent insights to energy sensing and myoprotection. Physiol Rev 2010; 90: 799-829
  • 4 Nichols CG. Adenosine triphosphate-sensitive potassium currents in heart disease and cardioprotection. Card Electrophysiol Clin 2016; 8: 323-335
  • 5 Gok S, Vural K, Sekuri C. et al. Effects of the blockade of cardiac sarcolemmal ATP-sensitive potassium channels on arrhythmias and coronary flow in ischemia-reperfusion model in isolated rat hearts. Vascul Pharmacol. 2006; 44: 197-205
  • 6 Alekseev AE, Reyes S, Yamada S. et al. Sarcolemmal ATP-sensitive K(+) channels control energy expenditure determining body weight. Cell Metab. 2010; 11: 58-69
  • 7 Garrott K, Kuzmiak-Glancy S, Wengrowski A. et al. KATP channel inhibition blunts electromechanical decline during hypoxia in left ventricular working rabbit hearts. J Physiol. 2017; 595: 3799-3813
  • 8 Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: A delay of lethal cell injury in ischemic myocardium. Circulation. 1986; 74: 1124-1136
  • 9 Blondeau N, Plamondon H, Richelme C. et al. K(ATP) channel openers, adenosine agonists and epileptic preconditioning are stress signals inducing hippocampal neuroprotection. Neuroscience. 2000; 100: 465-474
  • 10 Grover GJ, D’Alonzo AJ, Parham CS. et al. Cardioprotection with the KATP opener cromakalim is not correlated with ischemic myocardial action potential duration. J Cardiovasc Pharmacol 1995; 26: 145-152
  • 11 Schultz JE, Kwok WM, Hsu AK. et al. Terikalant, an inward-rectifier potassium channel blocker, does not abolish the cardioprotection induced by ischemic preconditioning in the rat. J Mol Cell Cardiol 1998; 30: 1817-1825
  • 12 Sato T, Sasaki N, Seharaseyon J. et al. Selective pharmacological agents implicate mitochondrial but not sarcolemmal KATP channels in ischemic cardioprotection. Circulation. 2000; 101: 2418-2423
  • 13 Jovanovic S, Jovanovic A. Delivery of genes encoding cardiac K(ATP) channel subunits in conjunction with pinacidil prevents membrane depolarization in cells exposed to chemical hypoxia-reoxygenation. Biochem Biophys Res Commun 2001; 282: 1098-1102
  • 14 Er F, Michels G, Gassanov N. et al. Testosterone induces cytoprotection by activating ATP-sensitive K+channels in the cardiac mitochondrial inner membrane. Circulation. 2004; 110: 3100-3107
  • 15 Ohtsuka T, Ishiwa D, Kamiya Y. et al. Effects of barbiturates on ATP-sensitive K channels in rat substantia nigra. Neuroscience. 2006; 137: 573-581
  • 16 Gong B, Miki T, Seino S. et al. A KATP channel deficiency affects resting tension, not contractile force, during fatigue in skeletal muscle. Am J Physiol 2000; 279: C1351-C1358
  • 17 Chen X, Minatoguchi S, Wang N. et al. Quinaprilat reduces myocardial infarct size involving nitric oxide production and mitochondrial KATPchannel in rabbits. J Cardiovasc Pharmacol 2003; 41: 938-945
  • 18 Ghosh S, Standen NB, Galiñanes M. Evidence for mitochondrial KATP channels as effectors of human myocardial preconditioning. Cardiovasc. Res 2000; 45: 934-940
  • 19 Gross GJ, Fryer RM. Sarcolemmal versus mitochondrial ATPsensitive K+channels and myocardial preconditioning. Circ Res. 1999; 84: 973-979
  • 20 Das B, Sarkar C. Similarities between ischemic preconditioning and 17beta-estradiol mediated cardiomyocyte KATPchannel activation leading to cardioprotective and antiarrhythmic effects during ischemia/reperfusion in the intact rabbit heart. J Cardiovasc Pharmacol 2006; 47: 277-286
  • 21 Das B, Sarkar C. Is the sarcolemmal or mitochondrial K(ATP) channel activation important in the antiarrhythmic and cardioprotective effects during acute ischemia/reperfusion in the intact anesthetized rabbit model?. Life Sci. 2005; 77: 1226-1248
  • 22 Toller WG, Gross ER, Kersten JR. et al. Sarcolemmal and mitochondrial adenosine triphosphate-dependent potassium channels: Mechanism of desfluraneinduced cardioprotection. Anesthesiology. 2000; 92: 1731-1739
  • 23 Bever L, Poitry S, Faure C. et al. Pore loop-mutated rat KIR6.1 and KIR6.2 suppress KATP current in rat cardiomyocytes. Am J Physiol Heart Circ Physiol 2004; 287: H850-H859
  • 24 Miura H, Wachtel RE, Loberiza Jr. FR. et al. Diabetes mellitus impairs vasodilation to hypoxia in human coronary arterioles: Reduced activity of ATP-sensitive potassium channels. Circ Res. 2003; 92: 151-158
  • 25 Singh H, Hudman D, Lawrence CL. et al. Distribution of Kir6.0 and SUR2 ATP-sensitive potassium channel subunits in isolated ventricular myocytes. J Mol Cell Cardiol 2003; 35: 445-459
  • 26 Zhou M, Tanaka O, Suzuki M. et al. Localization of pore-forming subunit of the ATP-sensitive K()-channel, Kir6.2, in rat brain neurons and glial cells. Brain Res Mol Brain Res 2002; 101: 23-32
  • 27 Teramoto N. Pharmacological profile of U-37883A, a channel blocker of smooth muscle-type ATP-sensitive K channels. Cardiovasc Drug Rev 2006; 24: 25-32
  • 28 Seharaseyon J, Ohler A, Sasaki N. et al. Molecular composition of mitochondrial ATP-sensitive potassium channels probed by viral Kir gene transfer. J Mol Cell Cardiol 2000; 32: 1923-1930
  • 29 Kuniyasu A, Kaneko K, Kawahara K. et al. Molecular assembly and subcellular distribution of ATP-sensitive potassium channel proteins in rat hearts. FEBS Lett 2003; 552: 259-263
  • 30 Lacza Z, Snipes JA, Miller AW. et al. Heart mitochondria contain functional ATP-dependent K channels. J Mol Cell Cardiol 2003; 35: 1339-1347
  • 31 Alexander SP, Benson HE, Faccenda E. et al. The concise guide to pharmacology 2013/14: Overview. Br J Pharmacol 2013; 170: 1449-1867
  • 32 Oketani N, Kakei M, Ichinari K. et al. Regulation of K(ATP) channels by P(2Y) purinoceptors coupled to PIP(2) metabolism in guinea pig ventricular cells. Am J Physiol Heart Circ Physiol 2002; 282: H757-H765
  • 33 Trube G, Hescheler J. Inward-rectifying channels in isolated patches of the heart cell membrane: ATP-dependence and comparison with cell-attached patches. Pflugers Arch 1984; 401: 178-184
  • 34 Spruce AE, Standen NB, Stanfield PR. Voltage-dependent ATP-sensitive potassium channels of skeletal muscle membrane. Nature. 1985; 316: 736-738
  • 35 Standen NB, Quayle JM, Davies NW. et al. Hyperpolarizing vasodilators activate ATP-sensitive K+channels in arterial smooth muscle. Science. 1989; 245: 177-180
  • 36 Noma A, Takano M. The ATP-sensitive K+channel. Jpn J Physiol 1991; 41: 177-187
  • 37 Wakeno-Takahashi M, Otani H, Nakao S. et al. Adenosine and a nitric oxide donor enhances cardioprotection by preconditioning with isoflurane through mitochondrial adenosine triphosphate-sensitive K+channel-dependent and -independent mechanisms. Anesthesiology. 2004; 100: 515-524
  • 38 Mannhold R. Structure-activity relationships of K(ATP) channel openers. Curr Top Med Chem 2006; 6: 1031-1047
  • 39 Saks V, Kaambre T, Guzun R. et al. The creatine kinase phosphotransfer network: Thermodynamic and kinetic considerations, the impact of the mitochondrial outer membrane and modelling approaches. Subcell Biochem 2007; 46: 27-65
  • 40 Garlid KD, Paucek P. Mitochondrial potassium transport: The K+cycle Biochim Biophys Acta. 2003; 1606: 23-41
  • 41 Rodrigo GC, Standen NB. ATP-sensitive potassium channels. Curr Pharm Des 2005; 11: 1915-1940
  • 42 Shi Y, Wu Z, Cui N. et al. PKA phosphorylation of SUR2B subunit underscores vascular KATP channel activation by beta-adrenergic receptors. Am J Physiol Regul Integr Comp Physiol 2007; 293: R1205-R1214
  • 43 Orie NN, Thomas AM, Perrino BA. et al. Ca2+/calcineurin regulation of cloned vascular K ATP channels: Crosstalk with the protein kinase A pathway. Br J Pharmacol 2009; 157: 554-564
  • 44 Sampson LJ, Davies LM, Barrett-Jolley R. et al. Angiotensin II-activated protein kinase C targets caveolae to inhibit aortic ATP-sensitive potassium channels. Cardiovasc Res. 2007; 76: 61-70
  • 45 Jiao J, Garg V, Yang B. et al. Protein kinase C-epsilon induces caveolin-dependent internalization of vascular adenosine 5′-triphosphate-sensitive K+channels. Hypertension. 2008; 52: 499-506
  • 46 Hayabuchi Y, Davies NW, Standen NB. (2001b) Angiotensin II inhibits rat arterial KATP channels by inhibiting steady-state protein kinase A activity and activating protein kinase Ce. J Physiol 2001; 530: 193-205
  • 47 Yellon DM, Downey JM. Preconditioning the myocardium: From cellular physiology to clinical cardiology. Physiol Rev. 2003; 83: 1113-1151
  • 48 Light PE, Sabir AA, Allen BG. et al. Protein kinase C-induced changes in the stoichiometry of ATP binding activate cardiac ATP-sensitive K+channels. A possible mechanistic link to ischemic preconditioning. Circ Res. 1996; 79: 399-406
  • 49 Aziz Q, Thomas AM, Khambra T. et al. Regulation of the ATP-sensitive potassium channel subunit, Kir6.2, by a Ca2+-dependent protein kinase C. J Biol Chem 2012; 287: 6196-6207
  • 50 Korchev YE, Negulyaev YA, Edwards CR. et al. Functional localization of single active ion channels on the surface of a living cell. Nat Cell Biol 2000; 2: 616-619
  • 51 Murphy E, Steenbergen C. Preconditioning: The mitochondrial connection. Annu Rev Physiol 2007; 69: 51-67
  • 52 Forbes RA, Steenbergen C, Murphy E. Diazoxide-induced cardioprotection requires signaling through a redox-sensitive mechanism. Circ Res. 2001; 88: 802-809
  • 53 Murphy MP. How mitochondria produce reactive oxygen species. Biochem J. 2009; 417: 1-13
  • 54 Fornazari M, De Paula JG, Castilho RF. et al. Redox properties of the adenoside triphosphate-sensitive K+channel in brain mitochondria. J Neurosci Res 2008; 86: 1548-1556
  • 55 Burwell LS, Brookes PS. Mitochondria asatarget for the cardioprotective effects of nitric oxide in ischemia–reperfusion injury. Antioxid Redox Signal 2007; 10: 579-600
  • 56 Giulivi C, Poderoso JJ, Boveris A. Production of nitric oxide by mitochondria. J Biol Chem 1998; 273: 11038-11043
  • 57 Rudolph V, Freeman BA. Cardiovascular consequences when nitric oxide and lipid signaling converge. Circ Res. 2009; 105: 511-522
  • 58 Sasaki N, Sato T, Ohler A. et al. Activation of mitochondrial ATP-dependent potassium channels by nitric oxide. Circulation. 2000; 101: 439-445
  • 59 Ljubkovic M, Shi Y, Cheng Q. et al. Cardiac mitochondrial ATPsensitive potassium channel is activated by nitric oxide in vitro. FEBS Lett 2007; 581: 4255-4259
  • 60 Nelson MT, Quayle JM. Physiological roles and properties of potassium channels in arterial smooth muscle. Am J Physiol 1995; 268: C799-C822
  • 61 Faraci FM, Heistad DD. Regulation of the cerebral circulation: Role of endothelium and potassium channels. Physiol Rev. 1998; 78: 53-97
  • 62 Harder DR, Smeda J, Lombard J. Enhanced myogenic depolarization in hypertensive cerebral arterial muscle. Circ Res. 1985; 57: 319-322
  • 63 Kitazono T, Heistad DD, Faraci FM. ATP-sensitive potassium channels in the basilar artery during chronic hypertension. Hypertension. 1993; 22: 677-681
  • 64 Sobey CG, Heistad DD, Faraci FM. Effect of subarachnoid hemorrhage on cerebral vasodilatation in response to activation of ATP-sensitive K1 channels in chronically hypertensive rats. Stroke. 1997; 28: 392-397
  • 65 Ohya Y, Setoguchi M, Fujii K. et al. Impaired action of levcromakalim on ATP-sensitive K1 channels in mesenteric artery cells from spontaneously hypertensive rats. Hypertension. 1996; 27: 1234-1239
  • 66 Kalliovalkama J, Jolma P, Tolvanen J-P. et al. Arterial function in nitric oxide-deficient hypertension: Influence of long-term angiotensin II receptor antagonism. Cardiovasc Res 1999; 42: 773-782
  • 67 Miyata N, Tsuschida K, Otomo S. Functional changes in potassium channels in carotid arteries from stroke-prone spontaneously hypertensive rats. Eur J Pharmacol 1990; 182: 209-210
  • 68 Kamata K, Miyata N, Kasuya Y. Functional changes in potassium channels in aortas from rats with streptozotocin-induced diabetes. Eur J Pharmacol 1989; 166: 319-323
  • 69 Bouchard J-F, Dumont EC, Lamontagne D. Modification of vasodilator response in streptozotocin-induced diabetic rat. Can J Physiol Pharmacol 1999; 77: 980-985
  • 70 Mayhan WG. Effect of diabetes mellitus on response of the basilar artery to activation of ATP-sensitive potassium channels. Brain Res. 1994; 636: 35-39
  • 71 Mayhan WG, Faraci FM. Responses of cerebral arterioles in diabetic rats to activation of ATP-sensitive potassium channels. Am J Physiol 1993; 265: H152-H157
  • 72 Tsuura Y, Ishida H, Okamoto Y. et al. Impaired glucose sensitivity of ATP-sensitive K1 channels in pancreatic b -cells in streptozotocin-induced NIDDM rats. Diabetes. 1992; 41: 861-865
  • 73 Shimoni Y, Firek L, Severson D. et al. Short-term diabetes alters K1 currents in rat ventricular myocytes. Circ Res. 1994; 74: 620-628
  • 74 Makino A, Ohuchi K, Kamata K. Mechanisms underlying the attenuation of endothelium-dependent vasodilatation in the mesenteric arterial bed of the streptozotocin-induced diabetic rat. Br J Pharmacol 2000; 130: 549-556
  • 75 Kersten JR, Brooks LA, Dellsperger KC. Impaired microvascular response to graded coronary occlusion in diabetic and hyperglycemic dogs. Am J Physiol 1995; 268: H1667-H1674
  • 76 Ikenaga H, Bast JP, Fallet RW. et al. Exaggerated impact of ATP-sensitive K1 channels on afferent arteriolar diameter in diabetes mellitus. J Am Soc Nephrol 2000; 11: 1199-1207
  • 77 Hostetter TH, Troy JL, Brenner BM. Glomerular hemodynamics in experimental diabetes mellitus. Kidney Int. 1981; 19: 410-415
  • 78 Fukao M, Hattori Y, Kanno M. et al. Alterations in endothelium-dependent hyperpolarization and relaxation in mesenteric arteries from streptozotocin-induced diabetic rats. Br J Pharmacol 1997; 121: 1383-1391
  • 79 Zimmerman PA, Knot HJ, Stevenson AS. et al. Increased myogenic tone and diminished responsiveness to ATP-sensitive K1 channel openers in cerebral arteries from diabetic rats. Circ Res. 1997; 81: 996-1004
  • 80 Sobey CG, Faraci FM. Effect of nitric oxide and potassium channel agonists and inhibitors on basilar artery diameter. Am J Physiol 1997; 272: H256-H262
  • 81 Faraci FM, Orgren K, Heistad DD. Impaired relaxation of the carotid artery during activation of ATP-sensitive potassium channels in atherosclerotic monkeys. Stroke. 1994; 25: 178-182
  • 82 Taguchi H, Faraci FM, Kitazono T. et al. Relaxation of the carotid artery to hypoxia is impaired in Watanabe Heritable Hyperlipidemic rabbits. Arterioscler Thromb Vasc Biol 1995; 15: 1641-1645
  • 83 Yamada S, Kane GC, Behfar A. et al. Protection conferred by myocardial ATP-sensitive K+channels in pressure overload-induced congestive heart failure revealed in KCNJ11 Kir6.2-null mutant. J Physiol 2006; 577: 1053-1065
  • 84 Isidoro TN, Philip-Couderc P, Papageorgiou I. et al. Expression and function of ATP-dependent potassium channels in late post-infarction remodeling. J Mol Cell Cardiol 2007; 42: 1016-1025
  • 85 Fedorov VV, Glukhov AV, Ambrosi CM. et al. Effects of KATP channel openers diazoxide and pinacidil in coronary-perfused atria and ventricles from failing and non-failing human hearts. J Mol Cell Cardiol 2009; 51: 215-225
  • 86 Isidoro TN, Philip-Couderc P, Baertschi AJ. et al. Angiotensin II and tumour necrosis factor alpha as mediators of ATP-dependent potassium channel remodelling in post-infarction heart failure. Cardiovasc Res. 2009; 83: 726-736
  • 87 Saegusa N, Sato T, Saito T. et al. Kir 6.2-deficient mice are susceptible to stimulated ANP secretion: K (ATP) channel acts as a negative feedback mechanism. Cardiovasc Res. 2005; 67: 60-68
  • 88 Prasad SM, Al-Dadah AS, Byrd GD. et al. Role of the sarcolemmal adenosine triphosphatesensitive potassium channel in hyperkalemic cardioplegia-induced myocyte swelling and reduced contractility. Ann Thorac 2006; 81: 148-153
  • 89 Taliyan R, Singh M, Sharma PL. et al. Possible involvement of α1 adrenergic receptor and KATP channels in cardioprotective effect of remote aortic preconditioning in isolated rat heart. J Cardiovasc Dis Res 2010; 1: 145-151
  • 90 Baines CP, Cohen MV, Downey JM. Signal transduction in ischemic preconditioning: The role of kinases and mitochondrial KATP channels. J Cardiovasc Electr 1999; 10: 741-754
  • 91 Murphy E. Primary and secondary signalling pathways in early preconditioning that converge on the mitochondria to produce cardioprotection. Circ Res. 2004; 94: 7-16
  • 92 Goyal A, Semwal B, Yadav HN. Abrogated cardioprotective ischemic preconditioning in ovariectomized heart. Human & experimental toxicology 2015; 10: 1-10
  • 93 Oldenburg O, Cohen MV, Yellon DM. et al. Mitochondrial K(ATP) channels: Role in cardioprotection. Cardiovasc Res 2002; 55: 429-437