Kardiologie up2date 2019; 15(04): 355-368
DOI: 10.1055/a-0809-6593
Diagnostische Verfahren und Bildgebung
Georg Thieme Verlag KG Stuttgart · New York

3-D-Mapping-Systeme und integrierte Bildgebung in der Elektrophysiologie

3D mapping systems and image integration in cardiac electrophysiology
Christopher A. B. Kowalewski
,
Felix Bourier
Further Information

Publication History

Publication Date:
02 December 2019 (online)

Zusammenfassung

Mit 3-D-Mapping-Systemen lässt sich die genaue Lage elektrophysiologischer Katheter im Herz bestimmen und bei kontinuierlicher Aufzeichnung ihrer Position zu einem anatomischen Bild zusammenfügen. Wird dann noch die intrakardiale „elektrische Information“ farbcodiert ergänzt, kann diese Darstellung sowohl mit Röntgen- als auch mit Schnittbildern fusioniert werden: ein komplexes Werkzeug für komplexe Arrhythmien.

Abstract

Successful mapping and ablation of cardiac arrhythmias is a challenging clinical task. For many years conventional pacing-maneuvers and activation mapping were the gold standard to identify and characterize arrhythmia mechanisms in electrophysiology procedures. Over the last decade, electrophysiology mapping and imaging technology has dramatically improved. In parallel to high density automated mapping, cardiac imaging and image integration tools are increasingly used to assess arrhythmia substrate and identify arrhythmia mechanisms. The aim of this review article is to provide an overview about current mapping technologies and to demonstrate their utilization in clinical practice.

Kernaussagen
  • Die Katheterablation stellt heute für viele Arrhythmien (Vorhofflimmern, ventrikuläre Tachykardien) ein anerkanntes therapeutisches Standardverfahren dar.

  • Zu Beginn jeder elektrophysiologischen Prozedur ist die vorliegende Arrhythmie präzise zu diagnostizieren.

  • Für die Ablation werden spezialisierte Katheter verwendet, die mittels Kryotechnik oder Radiofrequenzenergie Herzgewebe veröden.

  • Die Katheter steuert man durch klassische Fluoroskopie und durch 3-D-Mapping-Systeme. Letztere lokalisieren elektrophysiologische Katheter durch elektrische und/oder elektromagnetische Felder mit einer sehr hohen Genauigkeit (1 – 2 mm).

  • Moderne 3-D-Mapping-Systeme ermöglichen dabei die Integration verschiedener Bildgebungsmodalitäten (präprozedurale CT/MRT-Anatomie, 3-D-Katheternavigation, Fluoroskopie) zu einer einheitlichen Ansicht.

  • Darüber hinaus annotieren und interpretieren diese Systeme automatisiert intrakardiale Elektrogramme und erstellen zur Unterstützung des Untersuchers farbcodierte „Landkarten“ der untersuchten Arrhythmie.

 
  • Literatur

  • 1 Gallagher JJ, Svenson RH, Kasell JH. et al. Catheter technique for closed-chest ablation of the atrioventricular conduction system. N Engl J Med 1982; 306: 194-200
  • 2 Scheinman MM, Morady F, Hess DS. et al. Catheter-induced ablation of the atrioventricular junction to control refractory supraventricular arrhythmias. JAMA 1982; 248: 851-855
  • 3 Silka MJ, Gillette PC, Garson jr. A. et al. Transvenous catheter ablation of a right atrial automatic ectopic tachycardia. J Am Coll Cardiol 1985; 5: 999-1001
  • 4 Gepstein L, Gal H, Ben-Haim SA. A novel method for nonfluoroscopic catheter-based electroanatomical mapping of the heart: In vitro and in vivo accuracy results. Circulation 1997; 95: 1611-1622
  • 5 Estner HL, Deisenhofer I, Luik A. et al. Electrical isolation of pulmonary veins in patients with atrial fibrillation: Reduction of fluoroscopy exposure and procedure duration by the use of a non-fluoroscopic navigation system (NavX). Europace 2006; 8: 583-587
  • 6 Bourier F, Fahrig R, Wang P. et al. Accuracy assessment of catheter guidance technology in electrophysiology procedures: a comparison of a new 3D-based fluoroscopy navigation system to current electroanatomic mapping systems. J Cardiovasc Electrophysiol 2014; 25: 74-83
  • 7 Schaeffer B, Hoffmann BA, Meyer C. et al. Characterization, Mapping, and Ablation of Complex Atrial Tachycardia: Initial Experience With a Novel Method of Ultra High-Density 3D Mapping. J Cardiovasc Electrophysiol 2016; 27: 1139-1150
  • 8 Bourier F, Reents T, Ammar-Busch S. et al. Sensor-Based Electromagnetic Navigation (Mediguide®): How Accurate Is It? A Phantom Model Study. J Cardiovasc Electrophysiol 2015; 26: 1140-1145
  • 9 Gaspar T, Kircher S, Arya A. et al. Enhancement of intracardiac navigation by new GPSguided location system (MediGuide Technologies). Europace 2012; 14 (Suppl. 02) 24-25
  • 10 Sommer P, Richter S, Hindricks G. et al. Non-fluoroscopic catheter visualization using MediGuideTM technology: Experience from the first 600 procedures. J Interv Cardiac Electrophysiol 2014; 40: 209-214
  • 11 Bourier F, Reents T, Ammar-Busch S. et al. Transseptal Puncture Guided by CT-Derived 3D-Augmented Fluoroscopy. J Cardiovasc Electrophysiol 2016; 27: 369-372
  • 12 Reents T, Buiatti A, Ammar S. et al. Catheter ablation of ventricular arrhythmias using a fluoroscopy image integration module. Pacing Clin Electrophysiol 2015; 38: 700-705
  • 13 Bourier F, Ammar S, Reents T. et al. CT-fusion guided transseptal puncture in a patient with atrial fibrillation and absent right superior vena cava. Heart Rhythm Case Reports 2015;
  • 14 Haissaguerre M, Hocini M, Denis A. et al. Driver domains in persistent atrial fibrillation. Circulation 2014; 130: 530-538
  • 15 Hansen BJ, Zhao J, Csepe TA. et al. Atrial fibrillation driven by micro-anatomic intramural re-entry revealed by simultaneous sub-epicardial and sub-endocardial optical mapping in explanted human hearts. Eur Heart J 2015; 36: 2390-2401
  • 16 Kowalewski CAB, Shenasa F, Rodrigo M. et al. Interaction of Localized Drivers and Disorganized Activation in Persistent Atrial Fibrillation: Reconciling Putative Mechanisms Using Multiple Mapping Techniques. Circ Arrhythm Electrophysiol 2018; 11: e005846
  • 17 Duchateau J, Sacher F, Pambrun T. et al. Performance and limitations of noninvasive cardiac activation mapping. Heart Rhythm 2019; 16: 435-442 doi:10.1016/j.hrthm.2018.10.010
  • 18 Narayan SM, Krummen DE, Shivkumar K. et al. Treatment of atrial fibrillation by the ablation of localized sources: CONFIRM (Conventional Ablation for Atrial Fibrillation with or Without Focal Impulse and Rotor Modulation) trial. J Am Coll Cardiol 2012; 60: 628-636
  • 19 Park TH, Eichling JO, Schechtman KB. et al. Risk of radiation induced skin injuries from arrhythmia ablation procedures. Pacing Clin Electrophysiol 1996; 19: 1363-1369
  • 20 Estner HL, Grazia Bongiorni M, Chen J. et al. Scientific Initiative Committee, European Heart Rhythm Association. Use of fluoroscopy in clinical electrophysiology in Europe: results of the European Heart Rhythm Association Survey. Europace 2015; 17: 1149-1152 doi:10.1093/europace/euv223
  • 21 Bourier F, Reents T, Ammar-Busch S. et al. Evaluation of a new very low dose imaging protocol: feasibility and impact on X-ray dose levels in electrophysiology procedures. Europace 2016; 18: 1406-1410
  • 22 Reddy VY, Morales G, Ahmed H. et al. Catheter ablation of atrial fibrillation without the use of fluoroscopy. Heart Rhythm 2010; 7: 1644-1653
  • 23 Wolf M, Sacher F, Cochet H. et al. Long-Term Outcome of Substrate Modification in Ablation of Post-Myocardial Infarction Ventricular Tachycardia. Circ Arrhythm Electrophysiol 2018; 11: e005635
  • 24 Sacher F, Lim HS, Derval N. et al. Substrate mapping and ablation for ventricular tachycardia: the LAVA approach. J Cardiovasc Electrophysiol 2015; 26: 464-471
  • 25 Berruezo A, Fernández-Armenta J, Andreu D. et al. Scar dechanneling: new method for scar-related left ventricular tachycardia substrate ablation. Circ Arrhythm Electrophysiol 2015; 8: 326-336
  • 26 Di Biase L, Burkhardt JD, Lakkireddy D. et al. Ablation of Stable VTs Versus Substrate Ablation in Ischemic Cardiomyopathy: The VISTA Randomized Multicenter Trial. J Am Coll Cardiol 2015; 66: 2872-2882
  • 27 Josephson ME, Anter E. Substrate Mapping for Ventricular Tachycardia. JACC Clin Electrophysiol 2015; 1: 341-352
  • 28 Irie T, Yu R, Bradfield JS. et al. Relationship between sinus rhythm late activation zones and critical sites for scar-related ventricular tachycardia: systematic analysis of isochronal late activation mapping. Circ Arrhythm Electrophysiol 2015; 8: 390-399
  • 29 Bourier F, Martin R, Martin CA. et al. Is it feasible to offer ‘targeted ablation’ of ventricular tachycardia circuits with better understanding of isthmus anatomy and conduction characteristics?. Europace 2019; 21: i27-i33 doi:10.1093/europace/euy173
  • 30 Linton NW, Koa-Wing M, Francis DP. et al. Cardiac ripple mapping: A novel three-dimensional visualization method for use with electroanatomic mapping of cardiac arrhythmias. Heart Rhythm 2009; 6: 1754-1762
  • 31 Anter E, Tschabrunn CM, Contreras-Valdes FM. et al. Pulmonary vein isolation using the Rhythmia mapping system: Verification of intracardiac signals using the Orion mini-basket catheter. Heart Rhythm 2015; 12: 1927-1934
  • 32 Ptaszek LM, Moon B, Rozen G. et al. Novel automated point collection software facilitates rapid, high-density electroanatomical mapping with multiple catheter types. J Cardiovasc Electrophysiol 2018; 29: 186-195