Sportverletz Sportschaden 2019; 33(01): 21-29
DOI: 10.1055/a-0810-3516
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Advances in Delayed-Onset Muscle Soreness (DOMS) – Part II: Treatment and Prevention

Delayed Onset Muscle Soreness – Teil II: Therapie und Prävention
Rafael Heiss
1   Department of Radiology, University Hospital Erlangen, Germany
2   Muscle Research Center Erlangen, Interdisciplinary Center for Muscle Research, Friedrich-Alexander-University Erlangen-Nuremberg, Germany
,
Christoph Lutter
3   Department of Orthopedic and Trauma Surgery, Sportsorthopedics and Sportsmedicine, Klinikum Bamberg, Germany
,
Jürgen Freiwald
4   Department of Movement and Training Science, University of Wuppertal, Germany
5   High Performance Sports Commission, German-Austrian-Swiss Society for Orthopaedic Traumatologic Sports Medicine (GOTS)
,
Matthias W. Hoppe
4   Department of Movement and Training Science, University of Wuppertal, Germany
6   Department of Orthopedic, Trauma and Hand Surgery, Klinikum Osnabrück, Germany
,
Casper Grim
5   High Performance Sports Commission, German-Austrian-Swiss Society for Orthopaedic Traumatologic Sports Medicine (GOTS)
6   Department of Orthopedic, Trauma and Hand Surgery, Klinikum Osnabrück, Germany
,
Klaus Poettgen
7   B·A·D Group, Darmstadt, Germany
,
Raimund Forst
8   Department of Orthopedic Surgery, Friedrich-Alexander-University Erlangen-Nuremberg, Germany
,
Wilhelm Bloch
9   Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
,
Moritz Hüttel
8   Department of Orthopedic Surgery, Friedrich-Alexander-University Erlangen-Nuremberg, Germany
,
Thilo Hotfiel
2   Muscle Research Center Erlangen, Interdisciplinary Center for Muscle Research, Friedrich-Alexander-University Erlangen-Nuremberg, Germany
5   High Performance Sports Commission, German-Austrian-Swiss Society for Orthopaedic Traumatologic Sports Medicine (GOTS)
6   Department of Orthopedic, Trauma and Hand Surgery, Klinikum Osnabrück, Germany
8   Department of Orthopedic Surgery, Friedrich-Alexander-University Erlangen-Nuremberg, Germany
› Author Affiliations
Further Information

Publication History

Publication Date:
13 March 2019 (online)

Abstract

Delayed-onset muscle soreness (DOMS) describes an entity of ultrastructural muscle damage. The manifestation of DOMS is caused by eccentric muscle contractions or unaccustomed forms of exercise. Clinical signs include impaired muscular force capacities, painful restriction of movement, stiffness, swelling, and altered biomechanics in adjacent joints. Although DOMS is categorised as a mild type of muscle damage, it is one of the most common reasons for compromised sportive performance. In the last decade, many hypotheses have been developed to explain the aetiology of DOMS, and there are a wide range of different interventions aiming to prevent or alleviate the symptoms. Many studies have evaluated various types of cold or heat therapy, compression, massage, physical therapy or nutritional interventions. Treatment considerations focus on the primary prevention of ultrastructural lesions during exercise, the treatment of the inflammatory response that leads to DOMS, and recovery strategies for manifest DOMS. This narrative review aims to present an overview of the current treatment and preventive strategies in the field of DOMS.

Zusammenfassung

Die Delayed Onset Muscle-Soreness (DOMS) oder auch „verzögert einsetzender Muskelkater" wird zu den ultrastrukturellen Muskelschädigungen gezählt. Als ursächlich werden vorausgegangene exzentrische Kontraktionsformen oder ungewohnte Muskelbelastungen angesehen. Klinische Symptome imponieren in Form einer reduzierten Kraftentfaltung, schmerzhafter Bewegungseinschränkungen, einer Erhöhung des Muskeltonus, Schwellungen sowie Funktionseinschränkungen angrenzender Gelenke. Obwohl die DOMS den milden Schädigungsformen zugeordnet wird, hat sie aufgrund der leistungseinschränkenden Auswirkungen eine große Bedeutung – insbesondere für den Leistungssport. Zur Behandlung und Prävention dieser Muskelverletzung ist bislang ein großes Spektrum an interventionellen Verfahren beschrieben worden. Gegenstand vieler Studien sind verschiedene Wärme- oder Kälteanwendungen, Kompressionstherapien, Massagen, physikalische Therapieformen oder Ernährungsinterventionen. Interventionelle Ansätze haben das Ziel, die Entstehung von ursächlichen Ultrastrukturschäden zu verhindern, die Inflammationsantwort zu limitieren oder eine Symptomlinderung und Regenerationsförderung im Falle einer manifesten DOMS zu erreichen. Die vorliegende Arbeit hat das Ziel, aktuelle Therapieverfahren und Präventionsstrategien zu beleuchten.

 
  • References

  • 1 Crowther F, Sealey R, Crowe M. et al. Influence of recovery strategies upon performance and perceptions following fatiguing exercise: a randomized controlled trial. BMC sports science, medicine & rehabilitation 2017; 9: 25
  • 2 Hausswirth C, Mujika I. Recovery for performance in sport. Human Kinetics 2013. ISBN: 9781450434348
  • 3 Meyer T, Ferrauti A, Kellmann M. et al. Regenerationsmanagement im Spitzensport. REGman-Ergebnisse und Handlungsempfehlungen. Sportverlag Strauß; 2016
  • 4 Hotfiel T, Seil R, Bily W. et al. Nonoperative treatment of muscle injuries – recommendations from the GOTS expert meeting. J Exp Orthop 2018; 5: 24
  • 5 Hotfiel T, Freiwald J, Hoppe MW. et al. Advances in Delayed-Onset Muscle Soreness (DOMS): Part I: Pathogenesis and Diagnostics. Sportverletz Sportschaden 2018; 32 (04) 243-250 . doi:10.1055/a-0753-1884
  • 6 Rose C, Edwards KM, Siegler J. et al. Whole-body Cryotherapy as a Recovery Technique after Exercise: A Review of the Literature. International journal of sports medicine 2017; 38: 1049-1060
  • 7 Leeder J, Gissane C, van Someren K. et al. Cold water immersion and recovery from strenuous exercise: a meta-analysis. Br J Sports Med 2012; 46: 233-240
  • 8 Swenson C, Sward L, Karlsson J. Cryotherapy in sports medicine. Scand J Med Sci Sports 1996; 6: 193-200
  • 9 Wilcock IM, Cronin JB, Hing WA. Physiological response to water immersion: a method for sport recovery?. Sports Med 2006; 36: 747-765
  • 10 Stocks JM, Patterson MJ, Hyde DE. et al. Effects of immersion water temperature on whole-body fluid distribution in humans. Acta Physiol Scand 2004; 182: 3-10
  • 11 Proudfoot CJ, Garry EM, Cottrell DF. et al. Analgesia mediated by the TRPM8 cold receptor in chronic neuropathic pain. Curr Biol 2006; 16: 1591-1605
  • 12 Birbaumer N, Schmidt RF. Biologische Psychologie. (7 ed.): Springer Medizin Verlag; 2010
  • 13 Ihsan M, Watson G, Abbiss CR. What are the Physiological Mechanisms for Post-Exercise Cold Water Immersion in the Recovery from Prolonged Endurance and Intermittent Exercise?. Sports Med 2016; 46: 1095-1109
  • 14 Mawhinney C, Jones H, Joo CH. et al. Influence of cold-water immersion on limb and cutaneous blood flow after exercise. Med Sci Sports Exerc 2013; 45: 2277-2285
  • 15 Machado AF, Ferreira PH, Micheletti JK. et al. Can Water Temperature and Immersion Time Influence the Effect of Cold Water Immersion on Muscle Soreness? A Systematic Review and Meta-Analysis. Sports medicine (Auckland, NZ) 2016; 46: 503-514
  • 16 Hohenauer E, Taeymans J, Baeyens JP. et al. The Effect of Post-Exercise Cryotherapy on Recovery Characteristics: A Systematic Review and Meta-Analysis. PLoS One 2015; 10: e0139028
  • 17 Peake JM, Roberts LA, Figueiredo VC. et al. The effects of cold water immersion and active recovery on inflammation and cell stress responses in human skeletal muscle after resistance exercise. J Physiol 2017; 595: 695-711
  • 18 Costello JT, Baker PR, Minett GM. et al. Whole-body cryotherapy (extreme cold air exposure) for preventing and treating muscle soreness after exercise in adults. Cochrane Database Syst Rev 2015;
  • 19 Banfi G, Lombardi G, Colombini A. et al. Whole-body cryotherapy in athletes. Sports Med 2010; 40: 509-517
  • 20 Mila-Kierzenkowska C, Jurecka A, Wozniak A. et al. The effect of submaximal exercise preceded by single whole-body cryotherapy on the markers of oxidative stress and inflammation in blood of volleyball players. Oxid Med Cell Longev 2013; 2013: 409567
  • 21 Pournot H, Bieuzen F, Louis J. et al. Time-course of changes in inflammatory response after whole-body cryotherapy multi exposures following severe exercise. PLoS One 2011; 6: e22748
  • 22 Wozniak A, Mila-Kierzenkowska C, Szpinda M. et al. Whole-body cryostimulation and oxidative stress in rowers: the preliminary results. Arch Med Sci 2013; 9: 303-308
  • 23 Costello JT, Algar LA, Donnelly AE. Effects of whole-body cryotherapy (–110 degrees C) on proprioception and indices of muscle damage. Scand J Med Sci Sports 2012; 22: 190-198
  • 24 Hotfiel T, Bily W, Bloch W. et al. Konservative Therapie von Muskelverletzungen. In: Engelhardt M, Mauch F. Hrsg Muskel- und Sehnenverletzungen. Rolle-Verlag; 2017: 145-153
  • 25 Hotfiel T, Carl HD, Swoboda B. et al. Current Conservative Treatment and Management Strategies of Skeletal Muscle Injuries. Z Orthop Unfall 2016; 154: 245-253
  • 26 Michlovitz SL, Bellew JW, Nolan TP. Modalities for Therapeutic Intervention. 5th. Edition 2012
  • 27 Lohman 3rd EB, Bains GS, Lohman T. et al. A comparison of the effect of a variety of thermal and vibratory modalities on skin temperature and blood flow in healthy volunteers. Medical science monitor: international medical journal of experimental and clinical research 2011; 17: MT72-MT81
  • 28 Frier BC, Locke M. Heat stress inhibits skeletal muscle hypertrophy. Cell stress & chaperones 2007; 12: 132-141
  • 29 Goto K, Oda H, Kondo H. et al. Responses of muscle mass, strength and gene transcripts to long-term heat stress in healthy human subjects. European journal of applied physiology 2011; 111: 17-27
  • 30 Saga N, Katamoto S, Naito H. Effect of heat preconditioning by microwave hyperthermia on human skeletal muscle after eccentric exercise. Journal of sports science & medicine 2008; 7: 176-183
  • 31 McGorm H, Roberts LA, Coombes JS. et al. Turning Up the Heat: An Evaluation of the Evidence for Heating to Promote Exercise Recovery, Muscle Rehabilitation and Adaptation. Sports Med 2018;
  • 32 Beliard S, Chauveau M, Moscatiello T. et al. Compression garments and exercise: no influence of pressure applied. Journal of sports science & medicine 2015; 14: 75-83
  • 33 Hill J, Howatson G, van Someren K. et al. Compression garments and recovery from exercise-induced muscle damage: a meta-analysis. Br J Sports Med 2014; 48: 1340-1346
  • 34 Kim J, Lee J. Effect of compression garments on delayed-onset muscle soreness and blood inflammatory markers after eccentric exercise: a randomized controlled trial. Journal of exercise rehabilitation 2017; 13: 541-545
  • 35 Born DP, Sperlich B, Holmberg HC. Bringing light into the dark: effects of compression clothing on performance and recovery. International journal of sports physiology and performance 2013; 8: 4-18
  • 36 Trenell MI, Rooney KB, Sue CM. et al. Compression garments and recovery from eccentric exercise: A P-31-MRS study. J Sport Sci Med 2006; 5: 106-114
  • 37 Bringard A, Perrey S, Belluye N. Aerobic energy cost and sensation responses during submaximal running exercise positive effects of wearing compression tights. International journal of sports medicine 2006; 27: 373-378
  • 38 Ali A, Caine MP, Snow BG. Graduated compression stockings: Physiological and perceptual responses during and after exercise. Journal of sports sciences 2007; 25: 413-419
  • 39 Kemmler W, von Stengel S, Kockritz C. et al. Effect of compression stockings on running performance in men runners. Journal of strength and conditioning research 2009; 23: 101-105
  • 40 Ali A, Caine MP, Snow BG. Graduated compression stockings: physiological and perceptual responses during and after exercise. Journal of sports sciences 2007; 25: 413-419
  • 41 Ali A, Creasy RH, Edge JA. Physiological effects of wearing graduated compression stockings during running. European journal of applied physiology 2010; 109: 1017-1025
  • 42 Ali A, Creasy RH, Edge JA. The effect of graduated compression stockings on running performance. Journal of strength and conditioning research 2011; 25: 1385-1392
  • 43 Kraemer WJ, Bush JA, Wickham RB. et al. Influence of compression therapy on symptoms following soft tissue injury from maximal eccentric exercise. The Journal of orthopaedic and sports physical therapy 2001; 31: 282-290
  • 44 Valle X, Til L, Drobnic F. et al. Compression garments to prevent delayed onset muscle soreness in soccer players. Muscles, ligaments and tendons journal 2013; 3: 295-302
  • 45 Heiss R, Kellermann M, Swoboda B. et al. Effect of Compression Garments on the Development of Delayed-Onset Muscle Soreness: A Multimodal Approach Using Contrast-Enhanced Ultrasound and Acoustic Radiation Force Impulse Elastography. The Journal of orthopaedic and sports physical therapy 2018;
  • 46 Heiss R, Kellermann M, May Matthias S. et al. Effect of Compression Garments on the Development of Edema and Soreness in Delayed-Onset Muscle Soreness (DOMS). Journal of Sports Science and Medicine 2018; 17: 392-401
  • 47 Donahue RB, Vingren JL, Duplanty AA. et al. Acute Effect of Whole-Body Vibration Warm-up on Footspeed Quickness. Journal of strength and conditioning research 2016; 30: 2286-2291
  • 48 Martin JS, Borges AR, Beck DT. Peripheral conduit and resistance artery function are improved following a single, 1-h bout of peristaltic pulse external pneumatic compression. Eur J Appl Physiol 2015; 115: 2019-2029
  • 49 Freiwald J. Optimales Dehnen. Sport – Prävention – Rehabilitation. 2. Spitta; 2013
  • 50 Cheung K, Hume P, Maxwell L. Delayed onset muscle soreness: treatment strategies and performance factors. Sports Med 2003; 33: 145-164
  • 51 Hasson SM, Williams JH, Signorile JF. Fatigue-induced changes in myoelectric signal characteristics and perceived exertion. Can J Sport Sci 1989; 14: 99-102
  • 52 Weber MD, Servedio FJ, Woodall WR. The Effects of 3 Modalities on Delayed-Onset Muscle Soreness. J Orthop Sport Phys 1994; 20: 236-242
  • 53 Xie Y, Feng B, Chen K. et al. The Efficacy of Dynamic Contract-Relax Stretching on Delayed-Onset Muscle Soreness Among Healthy Individuals: A Randomized Clinical Trial. Clinical journal of sport medicine: official journal of the Canadian Academy of Sport Medicine 2018; 28: 28-36
  • 54 Torres R, Ribeiro F, Alberto Duarte J. et al. Evidence of the physiotherapeutic interventions used currently after exercise-induced muscle damage: systematic review and meta-analysis. Phys Ther Sport 2012; 13: 101-114
  • 55 Hotfiel T, Swoboda B, Krinner S. et al. Acute Effects of Lateral Thigh Foam Rolling on Arterial Tissue Perfusion Determined by Spectral Doppler and Power Doppler Ultrasound. Journal of strength and conditioning research 2017; 31: 893-900
  • 56 Macdonald GZ, Button DC, Drinkwater EJ. et al. Foam rolling as a recovery tool after an intense bout of physical activity. Medicine and science in sports and exercise 2014; 46: 131-142
  • 57 Jay K, Sundstrup E, Sondergaard SD. et al. Specific and cross over effects of massage for muscle soreness: randomized controlled trial. International journal of sports physical therapy 2014; 9: 82-91
  • 58 Pearcey GE, Bradbury-Squires DJ, Kawamoto JE. et al. Foam rolling for delayed-onset muscle soreness and recovery of dynamic performance measures. Journal of athletic training 2015; 50: 5-13
  • 59 Freiwald J, Baumgart C, Kühnemann M. et al. Foam-Rolling in sport and therapy – Potential benefits and risks Part 2 – Positive and adverse effects on athletic performance. Sports Orthopaedics and Traumatology 32: 267-275
  • 60 Freiwald J, Baumgart C, Kühnemann M. et al. Foam-Rolling in sport and therapy – Potential benefits and risks. Part 1 – Definitions, anatomy, physiology, and biomechanics. Sports Orthopaedics and Traumatology 32: 258-266
  • 61 Gorny V, Stoggl T. Tissue flossing as a recovery tool for the lower extremity after strength endurance intervals. Sportverletz Sportschaden 2018; 32: 55-60
  • 62 Driller MW, Overmayer RG. The effects of tissue flossing on ankle range of motion and jump performance. Phys Ther Sport 2017; 25: 20-24
  • 63 Veqar Z, Imtiyaz S. Vibration Therapy in Management of Delayed Onset Muscle Soreness (DOMS). Journal of clinical and diagnostic research: JCDR 2014; 8: LE01-LE04
  • 64 Dabbs NC, Black CD, Garner J. Whole-Body Vibration While Squatting and Delayed-Onset Muscle Soreness in Women. J Athl Train 2015; 50: 1233-1239
  • 65 Craig JA, Bradley J, Walsh DM. et al. Delayed onset muscle soreness: lack of effect of therapeutic ultrasound in humans. Arch Phys Med Rehabil 1999; 80: 318-323
  • 66 Kakaraparthi VN, Alahmari KA, Ahmed I. Effectiveness of pulsed ultrasound and cryotherapy on delayed onset muscle soreness. Saudi Journal of Sports Medicine 2016; 16: 133-138
  • 67 Aytar A, Tüzün EH, Eker L. et al. Effectiveness of low-dose pulsed ultrasound for treatment of delayed-onset muscle soreness: A double-blind randomized controlled trial. Isokinetics and Exercise Science 2008; 16: 239-247
  • 68 Ramon S, Gleitz M, Hernandez L. et al. Update on the efficacy of extracorporeal shockwave treatment for myofascial pain syndrome and fibromyalgia. International journal of surgery (London, England) 2015; 24: 201-206
  • 69 Fleckenstein J, Friton M, Himmelreich H. et al. Effect of a single administration of focused extracorporeal shock wave in the relief of Delayed-Onset Muscle Soreness: results of a partially-blinded randomized controlled trial. Archives of physical medicine and rehabilitation 2017
  • 70 Barnett A. Using recovery modalities between training sessions in elite athletes: does it help?. Sports medicine 2006; 36: 781-796
  • 71 Pinar S, Kaya F, Bicer B. et al. Different Recovery Methods And Muscle Performance After Exhausting Exercise: Comparison Of The Effects Of Electrical Muscle Stimulation And Massage. Biol Sport 2012; 29: 269-275
  • 72 Fleckenstein J, Niederer D, Auerbach K. et al. No Effect of Acupuncture in the Relief of Delayed-Onset Muscle Soreness: Results of a Randomized Controlled Trial. Clin J Sport Med 2016; 26: 471-477
  • 73 von Ammon K, Frei-Erb M, Cardini F. et al. Complementary and alternative medicine provision in Europe--first results approaching reality in an unclear field of practices. Forsch Komplementmed 2012; 19 (Suppl. 02) 37-43
  • 74 Paulsen G, Mikkelsen UR, Raastad T. et al. Leucocytes, cytokines and satellite cells: what role do they play in muscle damage and regeneration following eccentric exercise?. Exerc Immunol Rev 2012; 18: 42-97
  • 75 Schoenfeld BJ. The use of nonsteroidal anti-inflammatory drugs for exercise-induced muscle damage: implications for skeletal muscle development. Sports medicine (Auckland, NZ) 2012; 42: 1017-1028
  • 76 Hurme T, Kalimo H, Lehto M. et al. Healing of skeletal muscle injury: an ultrastructural and immunohistochemical study. Medicine and science in sports and exercise 1991; 23: 801-810
  • 77 Jarvinen TA, Jarvinen TL, Kaariainen M. et al. Muscle injuries: biology and treatment. Am J Sports Med 2005; 33: 745-764
  • 78 Sciorati C, Rigamonti E, Manfredi AA. et al. Cell death, clearance and immunity in the skeletal muscle. Cell Death Differ 2016; 23: 927-937
  • 79 Mackey AL, Rasmussen LK, Kadi F. et al. Activation of satellite cells and the regeneration of human skeletal muscle are expedited by ingestion of nonsteroidal anti-inflammatory medication. FASEB J 2016; 30: 2266-2281
  • 80 Kim J, Lee J. A review of nutritional intervention on delayed onset muscle soreness. Part I. J Exerc Rehabil 2014; 10: 349-356
  • 81 Lynn A, Garner S, Nelson N. et al. Effect of bilberry juice on indices of muscle damage and inflammation in runners completing a half-marathon: a randomised, placebo-controlled trial. J Int Soc Sports Nutr 2018; 15: 22
  • 82 Rawson ES, Miles MP, Larson-Meyer DE. Dietary Supplements for Health, Adaptation, and Recovery in Athletes. International journal of sport nutrition and exercise metabolism 2018; 28: 188-199
  • 83 Harper AE, Miller RH, Block KP. Branched-chain amino acid metabolism. Annu Rev Nutr 1984; 4: 409-454
  • 84 Foure A, Bendahan D. Is Branched-Chain Amino Acids Supplementation an Efficient Nutritional Strategy to Alleviate Skeletal Muscle Damage? A Systematic Review. Nutrients 2017; 9 (10) E1047 . doi:10.3390/nu9101047
  • 85 Hurley CF, Hatfield DL, Riebe DA. The effect of caffeine ingestion on delayed onset muscle soreness. Journal of strength and conditioning research 2013; 27: 3101-3109
  • 86 Jouris KB, McDaniel JL, Weiss EP. The Effect of Omega-3 Fatty Acid Supplementation on the Inflammatory Response to eccentric strength exercise. Journal of sports science & medicine 2011; 10: 432-438
  • 87 Su QS, Tian Y, Zhang JG. et al. Effects of allicin supplementation on plasma markers of exercise-induced muscle damage, IL-6 and antioxidant capacity. European journal of applied physiology 2008; 103: 275-283
  • 88 Ra SG, Miyazaki T, Ishikura K. et al. Combined effect of branched-chain amino acids and taurine supplementation on delayed onset muscle soreness and muscle damage in high-intensity eccentric exercise. Journal of the International Society of Sports Nutrition 2013; 10: 51
  • 89 Ranchordas MK, Rogerson D, Soltani H. et al. Antioxidants for preventing and reducing muscle soreness after exercise. The Cochrane database of systematic reviews 2017; 12: Cd009789
  • 90 Pumpa KL, Fallon KE, Bensoussan A. et al. The effects of topical Arnica on performance, pain and muscle damage after intense eccentric exercise. Eur J Sport Sci 2014; 14: 294-300
  • 91 Plezbert JA, Burke JR. Effects of the homeopathic remedy arnica on attenuating symptoms of exercise-induced muscle soreness. J Chiropr Med 2005; 4: 152-161
  • 92 Marzin T, Lorkowski G, Reule C. et al. Effects of a systemic enzyme therapy in healthy active adults after exhaustive eccentric exercise: a randomised, two-stage, double-blinded, placebo-controlled trial. BMJ Open Sport Exerc Med 2016; 2: e000191