RSS-Feed abonnieren
DOI: 10.1055/a-0824-1316
Triterpenoids from Hibiscus sabdariffa L. with PPARδ/γ Dual Agonist Action: In Vivo, In Vitro and In Silico Studies
Publikationsverlauf
received 03. Oktober 2018
revised 04. Dezember 2018
accepted 16. Dezember 2018
Publikationsdatum:
16. Januar 2019 (online)
Abstract
Hibiscus sabdariffa is a medicinal plant consumed as a diuretic and anti-obesity remedy. Several pharmacological studies have shown its beneficial effects in metabolism. Peroxisome proliferator-activated receptors δ and γ may play a role in the actions of H. sabdariffa. These nuclear receptors regulate lipid and glucose metabolism and are therapeutic targets for type 2 diabetes. This research aimed to perform a phytochemical study guided by a bioassay from H. sabdariffa to identify compounds with peroxisome proliferator-activated receptor δ and peroxisome proliferator-activated receptor γ agonist activity, supported by messenger ribonucleic acid expression, molecular docking, lipid accumulation, and an antihyperglycemic effect. An oral glucose tolerance test in mice with the aqueous extract of H. sabdariffa and the dichloromethane extract of H. sabdariffa was performed. The dichloromethane extract of H. sabdariffa exhibited an antihyperglycemic effect. The dichloromethane extract of H. sabdariffa was fractioned, and four fractions were evaluated in 3T3-L1 adipocytes on peroxisome proliferator-activated receptor δ, peroxisome proliferator-activated receptor γ, fatty acid transporter protein, and glucose transporter type 4 messenger ribonucleic acid expression. Fraction F3 exhibited peroxisome proliferator-activated receptor δ/γ dual agonist activity, and a further fractionation yielded two subfractions, F3-1 and F3-2, which also increased peroxisome proliferator-activated receptor δ and peroxisome proliferator-activated receptor γ expression. Subfractions were analyzed by GC/MS. The main compounds identified in F3-1 were linoleic acid, oleic acid, and palmitic acid, while in F3-2, the main compounds identified were α-amyrin and lupeol. These molecules were subjected to molecular docking analysis. α-Amyrin and lupeol showed the highest affinity. Moreover, both produced an increase in peroxisome proliferator-activated receptor δ, peroxisome proliferator-activated receptor γ, fatty acid transporter protein, and glucose transporter type 4 expression. Additionally, α-amyrin and lupeol decreased lipid accumulation in 3T3-L1 adipocytes and blood glucose in mice. Until now, α-amyrin and lupeol have not been reported with activity on peroxisome proliferator-activated receptors. This study provides evidence that α-amyrin and lupeol possess antidiabetic effects through a peroxisome proliferator-activated receptor δ/γ dual agonist action.
Supporting Information
- Supporting Information
Flow conditions of HPLC, TLC of 4 selected fractions and TLC that showing the identification of α-amyrin and lupeol in the HS-DCM and subfractions F3-1 and F3-2 are available as Supporting Information.
-
References
- 1 Alarcon-Aguilar FJ, Zamilpa A, Perez-Garcia MD, Almanza-Perez JC, Romero-Nunez E, Campos-Sepulveda EA, Vazquez-Carrillo LI, Roman-Ramos R. Effect of Hibiscus sabdariffa on obesity in MSG mice. J Ethnopharmacol 2007; 114: 66-71
- 2 Ajiboye TO, Raji HO, Adeleye AO, Adigun NS, Giwa OB, Ojewuyi OB, Oladiji AT. Hibiscus sabdariffa calyx palliates insulin resistance, hyperglycemia, dyslipidemia and oxidative rout in fructose-induced metabolic syndrome rats. J Sci Food Agric 2016; 96: 1522-1531
- 3 Hopkins AL, Lamm MG, Funk JL, Ritenbaugh C. Hibiscus sabdariffa L. in the treatment of hypertension and hyperlipidemia: a comprehensive review of animal and human studies. Fitoterapia 2013; 85: 84-94
- 4 Chen W, Zhou XB, Liu HY, Xu C, Wang LL, Li S. P633H, a novel dual agonist at peroxisome proliferator-activated receptors alpha and gamma, with different anti-diabetic effects in db/db and KK-Ay mice. Br J Pharmacol 2009; 157: 724-735
- 5 Hajer GR, van Haeften TW, Visseren FL. Adipose tissue dysfunction in obesity, diabetes, and vascular diseases. Eur Heart J 2008; 29: 2959-2971
- 6 Reilly SM, Lee CH. PPAR delta as a therapeutic target in metabolic disease. FEBS Lett 2008; 582: 26-31
- 7 Giordano Attianese GM, Desvergne B. Integrative and systemic approaches for evaluating PPARbeta/delta (PPARD) function. Nucl Recept Signal 2015; 13: e001
- 8 Matsuura N, Gamo K, Miyachi H, Iinuma M, Kawada T, Takahashi N, Akao Y, Tosa H. gamma-Mangostin from Garcinia mangostana pericarps as a dual agonist that activates both PPARalpha and PPARdelta. Biosci Biotechnol Biochem 2013; 77: 2430-2435
- 9 Ding Y, Yang KD, Yang Q. The role of PPARdelta signaling in the cardiovascular system. Prog Mol Biol Transl Sci 2014; 121: 451-473
- 10 Wang L, Waltenberger B, Pferschy-Wenzig EM, Blunder M, Liu X, Malainer C, Blazevic T, Schwaiger S, Rollinger JM, Heiss EH. Natural product agonists of peroxisome proliferator-activated receptor gamma (PPARgamma): a review. Biochem Pharmacol 2014; 92: 73-89
- 11 Chen Z, Zhang L, Yi J, Yang Z, Zhang Z, Li Z. Promotion of adiponectin multimerization by emodin: a novel AMPK activator with PPARgamma-agonist activity. J Cell Biochem 2012; 113: 3547-3558
- 12 Berger JP, Akiyama TE, Meinke PT. PPARs: therapeutic targets for metabolic disease. Trends Pharmacol Sci 2005; 26: 244-251
- 13 Chinetti-Gbaguidi G, Fruchart JC, Staels B. Role of the PPAR family of nuclear receptors in the regulation of metabolic and cardiovascular homeostasis: new approaches to therapy. Curr Opin Pharmacol 2005; 5: 177-183
- 14 Salam NK, Huang TH, Kota BP, Kim MS, Li Y, Hibbs D. Novel PPAR-gamma agonists identified from a natural product library: a virtual screening, induced-fit docking and biological assay study. Chem Biol Drug Des 2008; 71: 57-70
- 15 Takahashi N, Kawada T, Goto T, Yamamoto T, Taimatsu A, Matsui N, Kimura K, Saito M, Hosokawa M, Miyashita K. Dual action of isoprenols from herbal medicines on both PPARgamma and PPARalpha in 3T3-L1 adipocytes and HepG2 hepatocytes. FEBS Lett 2002; 514: 315-322
- 16 Guardiola S, Mach N. Therapeutic potential of Hibiscus sabdariffa: a review of the scientific evidence. Endocrinol Nutr 2014; 61: 274-295
- 17 Alarcon-Alonso J, Zamilpa A, Aguilar FA, Herrera-Ruiz M, Tortoriello J, Jimenez-Ferrer E. Pharmacological characterization of the diuretic effect of Hibiscus sabdariffa Linn (Malvaceae) extract. J Ethnopharmacol 2012; 139: 751-756
- 18 Pettersson I, Ebdrup S, Havranek M, Pihera P, Korinek M, Mogensen JP, Jeppesen CB, Johansson E, Sauerberg P. Design of a partial PPARdelta agonist. Bioorg Med Chem Lett 2007; 17: 4625-4629
- 19 Hidalgo-Figueroa S, Navarrete-Vazquez G, Estrada-Soto S, Giles-Rivas D, Alarcon-Aguilar FJ, Leon-Rivera I, Giacoman-Martinez A, Miranda Perez E, Almanza-Perez JC. Discovery of new dual PPARgamma-GPR40 agonists with robust antidiabetic activity: Design, synthesis and in combo drug evaluation. Biomed Pharmacother 2017; 90: 53-61
- 20 Bano G. Glucose homeostasis, obesity and diabetes. Best Pract Res Clin Obstet Gynaecol 2013; 27: 715-726
- 21 Viswakarma N, Jia Y, Bai L, Vluggens A, Borensztajn J, Xu J, Reddy JK. Coactivators in PPAR-regulated gene expression. PPAR Res 2010; 2010: 250126
- 22 Xu C, Wang LL, Liu HY, Ruan CM, Zhou XB, Cao YL, Li S. A novel dual peroxisome proliferator-activated receptors alpha and gamma agonist with beneficial effects on insulin resistance and lipid metabolism. Biotechnol Lett 2006; 28: 863-868
- 23 Suh HN, Huong HT, Song CH, Lee JH, Han HJ. Linoleic acid stimulates gluconeogenesis via Ca2+/PLC, cPLA2, and PPAR pathways through GPR40 in primary cultured chicken hepatocytes. Am J Physiol Cell Physiol 2008; 295: C1518-C1527
- 24 Wu HT, Chen W, Cheng KC, Ku PM, Yeh CH, Cheng JT. Oleic acid activates peroxisome proliferator-activated receptor delta to compensate insulin resistance in steatotic cells. J Nutr Biochem 2012; 23: 1264-1270
- 25 Santos FA, Frota JT, Arruda BR, de Melo TS, da Silva AA, Brito GA, Chaves MH, Rao VS. Antihyperglycemic and hypolipidemic effects of alpha, beta-amyrin, a triterpenoid mixture from Protium heptaphyllum in mice. Lipids Health Dis 2012; 11: 98
- 26 da Silva Júnior WF, Pinheiro JGO, de Menezes DLB, de Sobral E Silva NE, de Almeida PDO, Lima ES, da Veiga Júnior VF, de Azevedo EP, de Lima ÁAN. Development, physicochemical characterization and in vitro anti-inflammatory activity of solid dispersions of α,β amyrin isolated from Protium oilresin. Molecules 2017; 22: E1512
- 27 Pasceri V, Wu HD, Willerson JT, Yeh ET. Modulation of vascular inflammation in vitro and in vivo by peroxisome proliferator-activated receptor-gamma activators. Circulation 2000; 101: 235-238
- 28 Warensjo E, Riserus U, Gustafsson IB, Mohsen R, Cederholm T, Vessby B. Effects of saturated and unsaturated fatty acids on estimated desaturase activities during a controlled dietary intervention. Nutr Metab Cardiovasc Dis 2008; 18: 683-690
- 29 Petronelli A, Pannitteri G, Testa U. Triterpenoids as new promising anticancer drugs. Anticancer Drugs 2009; 20: 880-892
- 30 Liby KT, Yore MM, Sporn MB. Triterpenoids and rexinoids as multifunctional agents for the prevention and treatment of cancer. Nat Rev Cancer 2007; 7: 357-369
- 31 Xu GB, Xiao YH, Zhang QY, Zhou M, Liao SG. Hepatoprotective natural triterpenoids. Eur J Med Chem 2018; 145: 691-716
- 32 Feng J, Yi X, Huang W, Wang Y, He X. Novel triterpenoids and glycosides from durian exert pronounced anti-inflammatory activities. Food Chem 2018; 241: 215-221
- 33 Zhao WW, Zan K, Wu JY, Gao W, Yang J, Ba YY, Wu X, Chen XQ. Antibacterial triterpenoids from the leaves of Ilex hainanensis Merr. Nat Prod Res 2018;
- 34 Gupta R, Sharma AK, Sharma MC, Dobhal MP, Gupta RS. Evaluation of antidiabetic and antioxidant potential of lupeol in experimental hyperglycaemia. Nat Prod Res 2012; 26: 1125-1129
- 35 Geetha T, Varalakshmi P. Anti-inflammatory activity of lupeol and lupeol linoleate in rats. J Ethnopharmacol 2001; 76: 77-80
- 36 Tannehill-Gregg SH, Sanderson TP, Minnema D, Voelker R, Ulland B, Cohen SM, Arnold LL, Schilling BE, Waites CR, Dominick MA. Rodent carcinogenicity profile of the antidiabetic dual PPAR alpha and gamma agonist muraglitazar. Toxicol Sci 2007; 98: 258-270
- 37 Lindblom P, Berg AL, Zhang H, Westerberg R, Tugwood J, Lundgren H, Marcusson-Stahl M, Sjogren N, Blomgren B, Ohman P. Tesaglitazar, a dual PPAR-alpha/gamma agonist, hamster carcinogenicity, investigative animal and clinical studies. Toxicol Pathol 2012; 40: 18-32
- 38 Pillai HK, Fang M, Beglov D, Kozakov D, Vajda S, Stapleton HM, Webster TF, Schlezinger JJ. Ligand binding and activation of PPARgamma by Firemaster® 550: effects on adipogenesis and osteogenesis in vitro . Environ Health Perspect 2014; 122: 1225-1232
- 39 Dehoux MJ, van Beneden RP, Fernandez-Celemin L, Lause PL, Thissen JP. Induction of MafBx and Murf ubiquitin ligase mRNAs in rat skeletal muscle after LPS injection. FEBS Lett 2003; 544: 214-217
- 40 Garcia-Macedo R, Sanchez-Munoz F, Almanza-Perez JC, Duran-Reyes G, Alarcon-Aguilar F, Cruz M. Glycine increases mRNA adiponectin and diminishes pro-inflammatory adipokines expression in 3T3-L1 cells. Eur J Pharmacol 2008; 587: 317-321
- 41 Connors RV, Wang Z, Harrison M, Zhang A, Wanska M, Hiscock S, Fox B, Dore M, Labelle M, Sudom A. Identification of a PPARdelta agonist with partial agonistic activity on PPARgamma. Bioorg Med Chem Lett 2009; 19: 3550-3554
- 42 Balakumar P, Rose M, Ganti SS, Krishan P, Singh M. PPAR dual agonists: are they opening Pandoraʼs box?. Pharmacol Res 2007; 56: 91-98
- 43 Yamada P, Nemoto M, Shigemori H, Yokota S, Isoda H. Isolation of 5-(hydroxymethyl)furfural from Lycium chinense and its inhibitory effect on the chemical mediator release by basophilic cells. Planta Med 2011; 77: 434-440
- 44 Hidalgo-Figueroa S, Ramirez-Espinosa JJ, Estrada-Soto S, Almanza-Perez JC, Roman-Ramos R, Alarcon-Aguilar FJ, Hernandez-Rosado JV, Moreno-Diaz H, Diaz-Coutino D, Navarrete-Vazquez G. Discovery of thiazolidine-2, 4-dione/biphenylcarbonitrile hybrid as dual PPAR alpha/gamma modulator with antidiabetic effect: in vitro, in silico and in vivo approaches. Chem Biol Drug Des 2013; 81: 474-483