Subscribe to RSS
DOI: 10.1055/a-0825-6660
Noninvasive Collateral Flow Velocity Imaging in Acute Ischemic Stroke: Intraindividual Comparison of 4D-CT Angiography with Digital Subtraction Angiography
Nichtinvasive Bildgebung der Füllungsgeschwindigkeit der bestehenden Kollateralen bei akutem Schlaganfall: Intraindividueller Vergleich der 4D-CTA mit der digitalen SubtraktionsangiografiePublication History
13 August 2018
14 December 2018
Publication Date:
21 January 2019 (online)
Abstract
Purpose The collateral status can be defined not only by its morphological extent but also by the velocity of collateral filling characterized by the relative filling time delay (rFTD). The aim of our study was to compare different methods of noninvasive visualization of rFTD derived from 4D-CT angiography (4D-CTA) with digital substraction angiography (DSA) and to investigate the correlation between functional and morphological collateral status on timing-invariant CTA.
Materials and Methods 50 consecutive patients with acute occlusion in the M1 segment who underwent DSA for subsequent mechanical recanalization after multimodal CT were retrospectively analyzed. 4D-CTA data were used to assess the relative filling time delay between the A1 segment of the affected hemisphere and the sylvian branches distal to the occluded M1 segment using source images (4D-CTA-SI) and color-coded flow velocity visualization with prototype software (fv-CTA) in comparison to DSA. The morphological extent of collaterals was assessed on the basis of the Collateral Score (CS) on temporal maximum intensity projections (tMIP) derived from CT perfusion data.
Results There was very good correlation of rFTD between fv-CTA and DSA (n = 50, r = 0.9, p < 0.05). Differences of absolute rFTD values were not significant. 4D-CTA-SI and DSA also showed good correlation (n = 50, r = 0.6, p < 0.05), but mean values of rFTD were significantly different (p < 0.05). rFTD derived from fvCTA and CS derived from timing-invariant CTA showed a negative association (R = – 0.5; P = 0.000). In patients with a favorable radiological outcome defined by a TICI score of 2b or 3, there was a significant negative correlation of CS and mRS at 3 months (R = – 0.4, P = 0.006).
Conclusion Collateral status plays an important role in the outcome in stroke patients. rFTD derived from 4D-CTA is a suitable parameter for noninvasive imaging of collateral velocity, which correlates with the morphological extent of collaterals. Further studies are needed to define valid thresholds for rFTD and to evaluate the diagnostic and prognostic value.
Key points:
-
Collateral supply in anterior circulation stroke can be defined by the velocity of collateral filling
-
Relative filling time delay (rFTD) can serve for quantitative measurement of collateral flow and correlates with the morphological extent of collaterals
-
4D-CTA is a suitable noninvasive imaging technique
Citation Format
-
Muehlen I, Kloska SP, Gölitz P et al. Noninvasive Collateral Flow Velocity Imaging in Acute Ischemic Stroke: Intraindividual Comparison of 4D-CT Angiography with Digital Subtraction Angiography. Fortschr Röntgenstr 2019; 191: 827 – 835
Zusammenfassung
Hintergrund Der Kollateralisierungs-Status kann nicht nur qualitativ anhand der morphologischen Ausdehnung der Kollateralen, sondern auch quantitativ anhand der relativen Füllungsverzögerung (rFTD) bestimmt werden. Ziel unserer Studie war es, verschiedene Methoden der nichtinvasiven Darstellung der rFTD, abgeleitet aus der 4D-CT-Angiografie (4D-CTA), mit der digitalen Subtraktionsangiografie (DSA) zu vergleichen und den Zusammenhang zwischen dem funktionellen und morphologischen Kollateralisierungs-Status zu untersuchen.
Methode Retrospektiv wurden 50 Patienten mit akutem M1-Verschluss, bei denen nach Anfertigung eines multimodalen CTs eine DSA zur mechanischen Re-Kanalisation erfolgte, untersucht. Zur Bestimmung der relativen Füllungsverzögerung im A1-Segment der betroffenen Hemisphäre gegenüber den Mediaästen in der Sylvischen Fissur distal des M1-Verschlusses wurden die 4D-CTA-Datensätze herangezogen. Es wurden zum einen die Rohdaten (4D-CTA-SI), zum anderen eine Prototyp-Software mit farbkodierter Darstellung der Füllungsgeschwindigkeiten (fv-CTA) mit der DSA verglichen. Der morphologische Kollateralisierungs-Status wurde anhand der aus den CT-Perfusionsdaten berechneten zeitinvarianten CTA mithilfe des Collateral Score (CS) ermittelt.
Ergebnisse Die Korrelation der rFTD zwischen der fv-CTA und DSA war sehr gut (n = 50, r = 0,9, p < 0,05). Die Unterschiede zwischen den absoluten rFTD-Werten waren nicht signifikant. 4D-CTA-SI und DSA zeigten ebenfalls eine gute Korrelation (n = 50, r = 0,6, p < 0,05), allerdings unterschieden sich hier die Mittelwerte der rFTD signifikant (p < 0,05). Die aus der fvCTA abgeleitete rFTD und der anhand der zeitinvarianten CTA berechnete CS zeigten einen negativen Zusammenhang (R = – 0,5, P = 0,000). Bei den Patienten mit erfolgreicher Re-Kanalisation (TICI 2b/3) bestand eine signifikante negative Korrelation zwischen dem CS und dem mRS nach 3 Monaten (R = – 0,4, P = 0,006).
Schlussfolgerung Der Kollateralisierungs-Status spielt eine bedeutende Rolle für das Outcome bei Schlaganfall-Patienten. Die aus der 4D-CTA abgeleitete rFTD stellt einen adäquaten Parameter zur nichtinvasiven funktionellen Bildgebung des Kollateralisierungs-Status dar und korreliert mit dem morphologischen Kollateralisierungs-Status. Zur Definition valider Schwellenwerte und zur Evaluation der diagnostischen und prognostischen Relevanz sind weitere Studien nötig.
Kernaussagen:
-
Anhand der Füllungsgeschwindigkeit der Kollateralen kann der Kollateralisierungs-Status bei akutem Schlaganfall bestimmt werden.
-
Die relative Anflutungsverzögerung (rFTD) kann zur quantitativen Bestimmung der Kollateralisierung dienen und korreliert mit dem morphologischen Kollateralisierungs-Status.
-
Die 4D-CTA ist hierbei eine adäquate nichtinvasive Bildgebungstechnik.
-
References
- 1 Berkhemer OA, Fransen PS, Beumer D. MR CLEAN Investigators. et al. A randomized trial of intraarterial treatment for acute ischemic stroke. N Engl J Med 2015; 372: 11-20 . doi:10.1056/NEJMoal1411587
- 2 Goyal M, Demchuk AM, Menon BK. ESCAPE Trial Investigators. et al. Randomized assessment of rapid endovascular treatment of ischemic stroke. N Engl J Med 2015; 372: 1019-1030 . doi:10.1056/NEJMoal1414905
- 3 Campbell BC, Mitchell PJ, Kleinig TJ. EXTEND-IA Investigators. et al. Endovascular therapy for ischemic stroke with perfusion-imaging selection. N Engl J Med 2015; 372: 1009-1018 . doi:10.1056/NEJMoal1414792
- 4 Saver JL, Jahan R, Levy EI. et al. SWIFT Trialists. Solitaire flow restoration device versus the Merci Retriever in patients with acute ischaemic stroke (SWIFT): a randomized, parallel-group, non-inferiority trial. Lancet 2012; 380: 1241-1249 . doi:10.1016/S0140-6736(12)61384-1
- 5 Menon BK, Campbell BC, Levi C. et al. Role of Imaging in Current Acute Ischemic Stroke Workflow for Endovascular Therapy. Stroke 2015; 46: 1453-1461 .doi:10.1161/STROKEAHA.115.009160
- 6 Lee JS, Demchuk AM. Choosing a hyperacute stroke imaging protocol for proper patient selection and time efficient endovascular treatment: Lessons from recent trials. JoS 2015; 17: 221-228 . doi:10.5853/jos.2015.17.3.221
- 7 Zheng F, Xie W. Imaging-based patient selection and endovascular therapy of ischemic stroke- a stratified meta-analysis. Medicine (Baltimore) 2015; 94 (38) e1539 . doi:10.1097/MD.0000000000001539
- 8 Bang OY, Saver JL, Buck BH. et al. Impact of collateral flow on tissue fate in acute ischaemic stroke. J Neurol Neurosurg Psychiatry 2008; 79: 625-629 . doi:10.1136/jnnp.2007.132100
- 9 Hwang YH, Kang DH, Kim YW. et al. Impact of Time-to-Reperfusion on Outcome in Patients with Poor Collaterals. AJNR Am J Neuroradiol 2015; 36: 495-500
- 10 Beyer SE, Baumgarten L, Thierfelder KM. et al. Predictive value of the velocity of collateral filling in patients with acute ischemic stroke. J Cereb Blood Flow Metab 2015; 35: 206-212 . doi:10.1038/jcbfm.2014.182
- 11 Bang OY, Saver JL, Kim SJ. et al. Collateral Flow predicts Response to endovascular Therapy for acute ischemic stroke. Stroke 2011; 42: 693-699 . doi:10.1161/STROKEAHA.110.595256
- 12 Liebeskind DS, Tomsick TA, Foster LD. et al. Collaterals at Angiography and Outcomes in the Interventional Management of Stroke (IMS) III Trial. Stroke 2014; 45: 759-764 . doi:10.1161/STROKEAHA.113.004072
- 13 Christoforidis GA, Mohammad Y, Kehagias D. et al. Angiographic Assessment of pial collaterals as prognostic indicator following intra-arterial thrombolysis for acute ischemic stroke. AJNR Am J Neuroradiol 2005; 26: 1789-1797
- 14 Liebeskind DS, Jahan R, Nogueira RG. et al. Impact of Collaterals on successful revascularization in Solitaire FR with the intenetion for Thrombectomy. Stroke 2014; 45: 2036-2040 . doi:10.1161/STROKEAHA.114.004781
- 15 Roberts HC, Dillon WP, Furlan AJ. et al. Computed tomographic findings in patients undergoing intra-arterial thrombolysis for acute ischemic stroke due to middle cerebral artery occlusion: Results from the PROACT II Trial. Stroke 2002; 33: 1557-1565 . doi:10.1161/01.STR.0000018011.66817.41
- 16 McVerry F, Liebeskind DS, Muir KW. Systematic review of Methods for Assessing Leptomeningeal Collateral Flow. AJNR 2012;
- 17 Higashida RT, Furlan AJ. Trial design and reporting standards for intra-arterial cerebral thrombolysis for acute ischemic stroke. Stroke 2003;
- 18 Galimanis A, Jung S, Mono ML. et al. Endovascular therapy of 623 patients with anterior circulation stroke. Stroke 2012; 43: 1052-1057 . doi:10.1161/STROKEAHA.111.639112
- 19 Saito I, Segawa H, Shiokawa Y. et al. Middle cerebral artery occlusion: Correlation of computed tomography and angiography with clinical outcome. Stroke 1987; 18: 863-868
- 20 Al-Ali F, Jefferson A, Barrow T. et al. The capillary index score: rethinking the acute ischemic stroke treatment algorithm. Results from the Borgess Medical Center Acute Ischemic Stroke Registry. J NeuroIntervent Surg 2013; 5: 139-143 . doi:10.1136/neurintsurg-2011-010146
- 21 Kim JJ, Fischbein NJ, Lu Y. et al. Regional angiographic grading system for collateral flow- Correlation with cerebral infarction in patients with middle cerebral artery occlusion. Stroke 2004; 35: 1340-1344 . doi:10.1161/01.STR.0000126043.83777.3a
- 22 Consoli A, Andersson T, Holmberg A. et al. CT perfusion and angiographic assessment of pial collateral reperfusion in acute ischemic stroke: the CAPRI study. J NeuroIntervent Surg 2016; 8: 1211-1216 . doi:10.1136/neurintsurg-2015-012155
- 23 Souza LCS, Yoo AJ, Chaudhry ZA. et al. Malignant CTA collateral profile is highly specific for large admission DWI infarct core and poor outcome in acute stroke. AJNR Am J Neuroradiol 2012; 33: 1331-1336 . doi:10.3174/ajnr.A2985
- 24 Miteff F, Levi CR, Bateman GA. et al. The independent predictive utility of computed tomography angiographic collateral status in acute ischaemic stroke. Brain 2009; 132: 2231-2238 . doi:10.1093/brain/awp155
- 25 Cheng-Ching E, Frontera JA, Man S. et al. Degree of collaterals and not time is the determining factor of core infarct volume within 6 hours of stroke onset. AJNR AM J Neuroradiol 2015; 36: 1272-1276 . doi:10.3174/ajnr.A4274
- 26 Rosenthal ES, Schwamm LH, Roccatagliata L. et al. Role of recanalization in acute stroke outcome: rationale for a CT angiogram-based “benefit of recanalization” model. AJNR AM J Neuroradiol 2008; 29: 1471-1475
- 27 Lima FO, Furie KL, Sliva GS. et al. The pattern of leptomeningeal collaterals on CT angiography is a strong predictor of long-term functional outcome in stroke patients with large vessel intracranial occlusion. Stroke 2010; 41: 2316-2322
- 28 Menon BK, O’Brien B, Bivard A. et al. Assessment of leptomeningeal collaterals using dynamic CT angiography in patients with acute ischemic stroke. J Cereb Blood Flow Metab 2013; 33: 365-371
- 29 Kaschka IN, Kloska SP, Struffert T. et al. Clot Burden and Collaterals in anterior circulation stroke: Differences between single-phase CTA and multi-phase 4D-CTA. Clin Neuroradiol 2014;
- 30 Smit EJ, Vonken EJ, van Seeters T. et al. Timing-invariant imaging of collateral vessels in acute ischemic stroke. Stroke 2013; 44: 2194-2199 . doi:10.1161/STROKEAHA.111.000675
- 31 Cao W, Campbell BCV, Dong Q. et al. Relative filling time delay based on CT perfusion source imaging: a simple method to predict outcome in acute ischemic stroke. AJNR Am J Neuroradiol 2014; 35: 1683-1687 . doi:10.3174/ajnr.A3931
- 32 Thierfelder KM, Havla L, Beyer S. et al. Color-coded cerebral computed tomographic angiography-Implementation of a convolution-based algorithm and first clinical evaluation in patients with acute ischemic stroke. Invest Radiol 2015; 50: 361-365
- 33 Cover KS, Lagerwaard FJ, van den Berg R. et al. Color intensity projection of digitally substracted angiography for the visualization of brain arteriovenous malformations. Neurosurgery 2007; 60: 511-515 . doi:10.1227/01.NEU.0000255331.49791.B4
- 34 Strother CM, Bender F, Deuerling-Zheng Y. et al. Parametric color coding of digital substraction angiography. AJNR Am J Neuroradiol 2010; 31: 919-924 . doi:10.3174/ajnr.A2020
- 35 Gölitz P, Kaschka I, Lang S. et al. Real-time, in vivo monitoring, and quantitative assessment of intra-arterial vasospasm therapy. Neurocrit Care 2015;
- 36 Yamaguchi S, Kobayashi S, Murata A. et al. Effect of aging on collateral circulation via pial anastomoses in cats. Gerontology 1988; 34: 157-164
- 37 Faber JE, Zhang H, Lassance-Soares RM. et al. Aging causes collateral rarefaction and increased severity of ischemic injury in multiple tissues. Arterioscler Thromb Vasc Biol 2011; 31: 1748-1756 . doi:10.1161/ATVBAHA.111.227314. Epub 2011 May
- 38 Meretoja A, Keshtkaran M, Saver JL. et al. Stroke thrombolysis: save a minute, save a day. Stroke 2014; 45: 1053-1058
- 39 Kaschka IN, Kloska SP, Struffert T. et al. Clinical and radiological outcome after mechanical thrombectomy in acute ischemic stroke: What matters?. Neuroradiol J 2016; 29: 99-105 . doi:10.1177/1971400916628170