Subscribe to RSS
DOI: 10.1055/a-0825-9666
Gentherapie von Hämoglobinkrankheiten – aktuelle Konzepte und Herausforderungen
Gene Therapy for the Hemoglobin Disorders – Current Concepts and ChallengesPublication History
Publication Date:
21 August 2019 (online)
Zusammenfassung
Die β-Thalassämien und die Sichelzellerkrankung sind weltweit die häufigsten Einzelgendefekte, die konventionell nur durch eine lebenslang erforderliche Supportivtherapie oder kurativ mittels allogener Stammzelltransplantation behandelbar sind. Aktuell werden Gentherapiestrategien entwickelt, die nach Transduktion von hämatopoetischen Stammzellen durch lentivirale Vektoren zu einer Expression eines therapeutischen β-Globin-Gens oder zur therapeutischen Reexpression der fetalen Globinsynthese und damit des fetalen Hämoglobins (HbF) führen. Für die β-Thalassämie hat die Genadditionstherapie für eine ausgewählte Gruppe von Patientinnen und Patienten mit transfusionsbedürftiger Non-β0-Thalassaemia major nach konditionaler Zulassung durch die European Medicines Agency (EMA) im Juni 2019 einen ersten Grad klinischer Reife erreicht. In dieser Übersicht diskutieren wir darüber hinaus die Möglichkeiten und Herausforderungen von Genomeditierungsstrategien für die Hämoglobinkrankheiten, insbesondere durch Inaktivierung von BCL11A, des zentralen Inhibitors der postnatalen fetalen Hämoglobinsynthese. Insgesamt verspricht die Entwicklung der Gentherapie für die Hämoglobinkrankheiten eine relevante Chance für diese, auch in Deutschland zahlreicher werdenden Gruppe von Patientinnen und Patienten mit schweren, sowohl Lebensqualität als auch Lebenserwartung erheblich einschränkenden Erkrankungen.
Abstract
The β-thalassemias and sickle cell disease represent the most frequent single gene disorders worldwide. The standard of care for both conditions is either life-long supportive therapy or allogeneic stem cell transplantation. Currently, strategies for gene therapy are being developed, which are based on the lentiviral transduction of hematopoietic stem cells aiming at either re-establishing normal β-globin chain synthesis or at re-activating fetal γ-globin chain and HbF (fetal haemoglobin) expression. For a selected group of patients with transfusion dependent non-β0 thalassemia major the European Medicines Agency (EMA) conditionally licensed gene addition therapy in June 2019, which has thus reached the first step of clinical maturity. In this review, we also discuss the potential and the challenges of gene editing strategies for the hemoglobin diseases in particular by inactivating BCL11A, the central inhibitor of postnatal fetal hemoglobin synthesis. In sum, the development of gene therapy offers a relevant chance to this group of patients that has recently significantly increased in size also in Germany and who suffer from conditions that severely limit both, life expectancy and quality of life.
-
Literatur
- 1 Piel FB, Tatem AJ, Huang Z. et al. Global migration and the changing distribution of sickle haemoglobin: a quantitative study of temporal trends between 1960 and 2000. Lancet Glob Health 2014; 2: e80-e89 doi:10.1016/s2214-109x(13)70150-5
- 2 Modell B, Darlison M. Global epidemiology of haemoglobin disorders and derived service indicators. Bull World Health Organ 2008; 86: 480-487
- 3 Piel FB, Hay SI, Gupta S. et al. Global burden of sickle cell anaemia in children under five, 2010–2050: modelling based on demographics, excess mortality, and interventions. PLoS Med 2013; 10: e1001484 doi:10.1371/journal.pmed.1001484
- 4 Kunz JB, Cario H, Grosse R. et al. The epidemiology of sickle cell disease in Germany following recent large-scale immigration. Pediatr Blood Cancer 2017; DOI: 10.1002/pbc.26550.
- 5 Taher AT, Weatherall DJ, Cappellini MD. Thalassaemia. Lancet 2018; 391: 155-167 doi:10.1016/S0140-6736(17)31822-6
- 6 Baronciani D, Angelucci E, Potschger U. et al. Hemopoietic stem cell transplantation in thalassemia: a report from the European Society for Blood and Bone Marrow Transplantation Hemoglobinopathy Registry, 2000–2010. Bone Marrow Transplant 2016; 51: 536-541 doi:10.1038/bmt.2015.293
- 7 Angelucci E, Matthes-Martin S, Baronciani D. et al. Hematopoietic stem cell transplantation in thalassemia major and sickle cell disease: indications and management recommendations from an international expert panel. Haematologica 2014; 99: 811-820 doi:10.3324/haematol.2013.099747
- 8 Rees DC, Williams TN, Gladwin MT. Sickle-cell disease. Lancet 2010; 376: 2018-2031 doi:10.1016/S0140-6736(10)61029-X
- 9 Forget BG. Molecular basis of hereditary persistence of fetal hemoglobin. Ann N Y Acad Sci 1998; 850: 38-44
- 10 Steinberg MH, Chui DH, Dover GJ. et al. Fetal hemoglobin in sickle cell anemia: a glass half full?. Blood 2014; 123: 481-485 doi:10.1182/blood-2013-09-528067
- 11 Serjeant GR. Mortality from sickle cell disease in Africa. BMJ 2005; 330: 432-433 doi:10.1136/bmj.330.7489.432
- 12 Quinn CT, Rogers ZR, McCavit TL. et al. Improved survival of children and adolescents with sickle cell disease. Blood 2010; 115: 3447-3452 doi:10.1182/blood-2009-07-233700
- 13 Platt OS, Brambilla DJ, Rosse WF. et al. Mortality in sickle cell disease. Life expectancy and risk factors for early death. N Engl J Med 1994; 330: 1639-1644 doi:10.1056/NEJM199406093302303
- 14 Ngo S, Bartolucci P, Lobo D. et al. Causes of Death in Sickle Cell Disease Adult Patients: Old and New Trends. Blood 2014; 124: 2715-2715
- 15 Ataga KI, Kutlar A, Kanter J. et al. Crizanlizumab for the Prevention of Pain Crises in Sickle Cell Disease. N Engl J Med 2017; 376: 429-439 doi:10.1056/NEJMoa1611770
- 16 Telen MJ, Wun T, McCavit TL. et al. Randomized phase 2 study of GMI-1070 in SCD: reduction in time to resolution of vaso-occlusive events and decreased opioid use. Blood 2015; 125: 2656-2664 doi:10.1182/blood-2014-06-583351
- 17 Wang WC, Ware RE, Miller ST. et al. Hydroxycarbamide in very young children with sickle-cell anaemia: a multicentre, randomised, controlled trial (BABY HUG). Lancet 2011; 377: 1663-1672 doi:10.1016/S0140-6736(11)60355-3
- 18 Howard J, Hemmaway CJ, Telfer P. et al. A phase 1/2 ascending dose study and open-label extension study of voxelotor in patients with sickle cell disease. Blood 2019; DOI: 10.1182/blood-2018-08-868893.
- 19 Niihara Y, Miller ST, Kanter J. et al. A Phase 3 Trial of l-Glutamine in Sickle Cell Disease. N Engl J Med 2018; 379: 226-235 doi:10.1056/NEJMoa1715971
- 20 Cario H, Grosse R, Jarisch A, Kulozik AE, Kunz JB, Lobitz S. AWMF-Leitlinie 025/016 Sichelzellkrankheit. 2014. Im Internet: https://www.awmf.org/uploads/tx_szleitlinien/025-016l_S2k_Sichelzellkrankheit_2014-12_verlaengert.pdf Stand: 04.07.2019
- 21 Cappelli B, Volt F, Tozatto-Maio K. et al. Risk factors and outcomes according to age at transplantation with an HLA-identical sibling for sickle cell disease. Haematologica 2019; DOI: 10.3324/haematol.2019.216788.
- 22 Foell J, Schulte JH, Pfirstinger B. et al. Haploidentical CD3 or alpha/beta T-cell depleted HSCT in advanced stage sickle cell disease. Bone Marrow Transplant 2019; DOI: 10.1038/s41409-019-0550-0.
- 23 Foell J, Pfirstinger B, Rehe K. et al. Haploidentical stem cell transplantation with CD3(+)-/CD19(+)- depleted peripheral stem cells for patients with advanced stage sickle cell disease and no alternative donor: results of a pilot study. Bone Marrow Transplant 2017; 52: 938-940 doi:10.1038/bmt.2017.49
- 24 Thompson AA, Walters MC, Kwiatkowski J. et al. Gene Therapy in Patients with Transfusion-Dependent beta-Thalassemia. N Engl J Med 2018; 378: 1479-1493 doi:10.1056/NEJMoa1705342
- 25 Ribeil JA, Hacein-Bey-Abina S, Payen E. et al. Gene Therapy in a Patient with Sickle Cell Disease. N Engl J Med 2017; 376: 848-855 doi:10.1056/NEJMoa1609677
- 26 Andreani M, Testi M, Gaziev J. et al. Quantitatively different red cell/nucleated cell chimerism in patients with long-term, persistent hematopoietic mixed chimerism after bone marrow transplantation for thalassemia major or sickle cell disease. Haematologica 2011; 96: 128-133 doi:10.3324/haematol.2010.031013
- 27 Maniatis T, Kee SG, Efstratiadis A. et al. Amplification and characterization of a beta-globin gene synthesized in vitro. Cell 1976; 8: 163-182
- 28 Kolata GB, Wade N. Human gene treatment stirs new debate. Science 1980; 210: 407
- 29 Blaese RM, Culver KW, Miller AD. et al. T lymphocyte-directed gene therapy for ADA- SCID: initial trial results after 4 years. Science 1995; 270: 475-480
- 30 Kohn DB, Weinberg KI, Nolta JA. et al. Engraftment of gene-modified umbilical cord blood cells in neonates with adenosine deaminase deficiency. Nat Med 1995; 1: 1017-1023
- 31 Aiuti A, Slavin S, Aker M. et al. Correction of ADA-SCID by stem cell gene therapy combined with nonmyeloablative conditioning. Science 2002; 296: 2410-2413 doi:10.1126/science.1070104
- 32 Bordignon C, Notarangelo LD, Nobili N. et al. Gene therapy in peripheral blood lymphocytes and bone marrow for ADA- immunodeficient patients. Science 1995; 270: 470-475
- 33 Thrasher AJ, Williams DA. Evolving Gene Therapy in Primary Immunodeficiency. Mol Ther 2017; 25: 1132-1141 doi:10.1016/j.ymthe.2017.03.018
- 34 Boztug K, Schmidt M, Schwarzer A. et al. Stem-cell gene therapy for the Wiskott-Aldrich syndrome. N Engl J Med 2010; 363: 1918-1927 doi:10.1056/NEJMoa1003548
- 35 Braun CJ, Boztug K, Paruzynski A. et al. Gene therapy for Wiskott-Aldrich syndrome–long-term efficacy and genotoxicity. Sci Transl Med 2014; 6: 227ra233 doi:10.1126/scitranslmed.3007280
- 36 Stein S, Ott MG, Schultze-Strasser S. et al. Genomic instability and myelodysplasia with monosomy 7 consequent to EVI1 activation after gene therapy for chronic granulomatous disease. Nat Med 2010; 16: 198-204 doi:10.1038/nm.2088
- 37 Howe SJ, Mansour MR, Schwarzwaelder K. et al. Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients. J Clin Invest 2008; 118: 3143-3150 doi:10.1172/JCI35798
- 38 Deichmann A, Brugman MH, Bartholomae CC. et al. Insertion sites in engrafted cells cluster within a limited repertoire of genomic areas after gammaretroviral vector gene therapy. Mol Ther 2011; 19: 2031-2039 doi:10.1038/mt.2011.178
- 39 Biasco L, Rothe M, Buning H. et al. Analyzing the Genotoxicity of Retroviral Vectors in Hematopoietic Cell Gene Therapy. Mol Ther Methods Clin Dev 2018; 8: 21-30 doi:10.1016/j.omtm.2017.10.002
- 40 Cavazza A, Moiani A, Mavilio F. Mechanisms of retroviral integration and mutagenesis. Hum Gene Ther 2013; 24: 119-131 doi:10.1089/hum.2012.203
- 41 Payen E, Colomb C, Negre O. et al. Lentivirus vectors in beta-thalassemia. Methods Enzymol 2012; 507: 109-124 doi:10.1016/B978-0-12-386509-0.00006-5
- 42 Thornhill SI, Schambach A, Howe SJ. et al. Self-inactivating gammaretroviral vectors for gene therapy of X-linked severe combined immunodeficiency. Mol Ther 2008; 16: 590-598 doi:10.1038/sj.mt.6300393
- 43 Milone MC, OʼDoherty U. Clinical use of lentiviral vectors. Leukemia 2018; 32: 1529-1541 doi:10.1038/s41375-018-0106-0
- 44 Aiuti A, Biasco L, Scaramuzza S. et al. Lentiviral hematopoietic stem cell gene therapy in patients with Wiskott-Aldrich syndrome. Science 2013; 341: 1233151 doi:10.1126/science.1233151
- 45 Lidonnici MR, Paleari Y, Tiboni F. et al. Multiple Integrated Non-clinical Studies Predict the Safety of Lentivirus-Mediated Gene Therapy for beta-Thalassemia. Mol Ther Methods Clin Dev 2018; 11: 9-28 doi:10.1016/j.omtm.2018.09.001
- 46 Karponi G, Psatha N, Lederer CW. et al. Plerixafor+G-CSF-mobilized CD34+ cells represent an optimal graft source for thalassemia gene therapy. Blood 2015; 126: 616-619 doi:10.1182/blood-2015-03-629618
- 47 Kanter J, Walters MC, Hsieh M. et al. Interim Results from a Phase 1/2 Clinical Study of Lentiglobin Gene Therapy for Severe Sickle Cell Disease. Blood 2017; 130: 527-527
- 48 Uchida N, Fujita A, Hsieh MM. et al. Bone Marrow as a Hematopoietic Stem Cell Source for Gene Therapy in Sickle Cell Disease: Evidence from Rhesus and SCD Patients. Hum Gene Ther Clin Dev 2017; 28: 136-144 doi:10.1089/humc.2017.029
- 49 Leonard A, Bonifacino A, Dominical VM. et al. Bone marrow characterization in sickle cell disease: inflammation and stress erythropoiesis lead to suboptimal CD34 recovery. Br J Haematol 2019; DOI: 10.1111/bjh.15902.
- 50 Esrick EB, Manis JP, Daley H. et al. Successful hematopoietic stem cell mobilization and apheresis collection using plerixafor alone in sickle cell patients. Blood Adv 2018; 2: 2505-2512 doi:10.1182/bloodadvances.2018016725
- 51 Marktel S, Scaramuzza S, Cicalese MP. et al. Intrabone hematopoietic stem cell gene therapy for adult and pediatric patients affected by transfusion-dependent ss-thalassemia. Nat Med 2019; 25: 234-241 doi:10.1038/s41591-018-0301-6
- 52 Mansilla-Soto J, Riviere I, Boulad F. et al. Cell and Gene Therapy for the Beta-Thalassemias: Advances and Prospects. Hum Gene Ther 2016; 27: 295-304 doi:10.1089/hum.2016.037
- 53 Czechowicz A, Palchaudhuri R, Scheck A. et al. Selective hematopoietic stem cell ablation using CD117-antibody-drug-conjugates enables safe and effective transplantation with immunity preservation. Nat Commun 2019; 10: 617 doi:10.1038/s41467-018-08201-x
- 54 Palchaudhuri R, Saez B, Hoggatt J. et al. Non-genotoxic conditioning for hematopoietic stem cell transplantation using a hematopoietic-cell-specific internalizing immunotoxin. Nat Biotechnol 2016; 34: 738-745 doi:10.1038/nbt.3584
- 55 Bernaudin F, Socie G, Kuentz M. et al. Long-term results of related myeloablative stem-cell transplantation to cure sickle cell disease. Blood 2007; 110: 2749-2756 doi:10.1182/blood-2007-03-079665
- 56 Cavazzana-Calvo M, Payen E, Negre O. et al. Transfusion independence and HMGA2 activation after gene therapy of human beta-thalassaemia. Nature 2010; 467: 318-322 doi:10.1038/nature09328
- 57 Kulozik AE, Locatelli F, Yannaki E, Porter JB, Thuret I, Sauer MG, Lal A, Kwiatkowski JL, Elliot H, Tao G, Colvin RA, Thompson AA. Results from the Phase 3 Northstar-3 Study Evaluating Lentiglobin Gene Therapy in Patients with Transfusion-Dependent Β-thalassaemia and a Β0 or IVS-I-110 mutation at both alleles of the HBB Gene EHA. Oral presentation 2019. Im Internet: https://library.ehaweb.org/eha/2019/24th/267341/andreas.e.kulozik.results.from.the.phase.3.northstar-3.study.evaluating.html?f=listing%253D0%252Abrowseby%253D8%252Asortby%253D1%252Asearch%253Dhgb-212 Stand: 04.07.2019
- 58 Traxler EA, Yao Y, Wang YD. et al. A genome-editing strategy to treat beta-hemoglobinopathies that recapitulates a mutation associated with a benign genetic condition. Nat Med 2016; 22: 987-990 doi:10.1038/nm.4170
- 59 Breda L, Motta I, Lourenco S. et al. Forced chromatin looping raises fetal hemoglobin in adult sickle cells to higher levels than pharmacologic inducers. Blood 2016; 128: 1139-1143 doi:10.1182/blood-2016-01-691089
- 60 Orkin SH, Bauer DE. Emerging Genetic Therapy for Sickle Cell Disease. Annu Rev Med 2019; 70: 257-271 doi:10.1146/annurev-med-041817-125507
- 61 Xu J, Peng C, Sankaran VG. et al. Correction of sickle cell disease in adult mice by interference with fetal hemoglobin silencing. Science 2011; 334: 993-996 doi:10.1126/science.1211053
- 62 Doudna JA, Charpentier E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 2014; 346: 1258096 doi:10.1126/science.1258096
- 63 Gundry MC, Brunetti L, Lin A. et al. Highly Efficient Genome Editing of Murine and Human Hematopoietic Progenitor Cells by CRISPR/Cas9. Cell Rep 2016; 17: 1453-1461 doi:10.1016/j.celrep.2016.09.092
- 64 Vierstra J, Reik A, Chang KH. et al. Functional footprinting of regulatory DNA. Nat Methods 2015; 12: 927-930 doi:10.1038/nmeth.3554
- 65 Canver MC, Smith EC, Sher F. et al. BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis. Nature 2015; 527: 192-197 doi:10.1038/nature15521
- 66 Bauer DE, Kamran SC, Lessard S. et al. An erythroid enhancer of BCL11A subject to genetic variation determines fetal hemoglobin level. Science 2013; 342: 253-257 doi:10.1126/science.1242088
- 67 Chang KH, Smith SE, Sullivan T. et al. Long-Term Engraftment and Fetal Globin Induction upon BCL11A Gene Editing in Bone-Marrow-Derived CD34(+) Hematopoietic Stem and Progenitor Cells. Mol Ther Methods Clin Dev 2017; 4: 137-148 doi:10.1016/j.omtm.2016.12.009
- 68 Brendel C, Guda S, Renella R. et al. Lineage-specific BCL11A knockdown circumvents toxicities and reverses sickle phenotype. J Clin Invest 2016; 126: 3868-3878 doi:10.1172/jci87885
- 69 Gluckman E, Cappelli B, Bernaudin F. et al. Sickle cell disease: an international survey of results of HLA-identical sibling hematopoietic stem cell transplantation. Blood 2017; 129: 1548-1556 doi:10.1182/blood-2016-10-745711
- 70 Locatelli F, Kabbara N, Ruggeri A. et al. Outcome of patients with hemoglobinopathies given either cord blood or bone marrow transplantation from an HLA-identical sibling. Blood 2013; 122: 1072-1078 doi:10.1182/blood-2013-03-489112