Planta Med 2019; 85(06): 496-502
DOI: 10.1055/a-0826-0483
Natural Product Chemistry and Analytical Studies
Original Papers
Georg Thieme Verlag KG Stuttgart · New York

Cytotoxic Alkaloids from Leaves of Pilea aff. martinii

Ai Doan Thi Thuy
1   Advanced Center for Bioorganic Chemistry, Institute of Marine Biochemistry of the Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
2   National University of Agriculture, Trau Quy, Hanoi, Vietnam
,
Van Trinh Thi Thanh
1   Advanced Center for Bioorganic Chemistry, Institute of Marine Biochemistry of the Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
,
Huong Doan Thi Mai
1   Advanced Center for Bioorganic Chemistry, Institute of Marine Biochemistry of the Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
,
Huyen Tram Le
3   Hanoi University of Science and Technology (HUST), Hanoi, Vietnam
,
Marc Litaudon
4   Institut de Chimie des Substances Naturelles, CNRS-ICSN, UPR 2301, Université Paris-Sud, Paris, France
,
Van Hung Nguyen
1   Advanced Center for Bioorganic Chemistry, Institute of Marine Biochemistry of the Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
,
Van Minh Chau
1   Advanced Center for Bioorganic Chemistry, Institute of Marine Biochemistry of the Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
,
Van Cuong Pham
1   Advanced Center for Bioorganic Chemistry, Institute of Marine Biochemistry of the Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
› Author Affiliations
Further Information

Publication History

received 13 September 2018
revised 05 December 2018

accepted 19 December 2018

Publication Date:
21 February 2019 (online)

Abstract

Two new phenanthroquinolizidine alkaloids (1 and 2) and a new piperidine derivative (3) were isolated from the leaves of Pilea aff. martinii together with 3 known alkaloids: julandine (4), cryptopleurine (5), and 1,3,6,6-tetramethyl-5,6,7,8-tetrahydro-isoquinolin-8-one (6). Their structures were determined by spectral data analyses including mass spectrometry and 2-dimensional nuclear magnetic resonance data. The absolute configurations of 13 were established by comparison of their experimental circular dichroism data with the calculated electronic circular dichroism spectra. The isolated compounds were evaluated for their cytotoxicity against 4 cancer cell lines: KB (mouth epidermal carcinoma cells), HepG-2 (human liver hepatocellular carcinoma cells), LU-1 (human lung adenocarcinoma cells), and MCF-7 (human breast cancer cells). The new phenanthroquinolizidine pileamartine D (2) showed strong and selective proliferation inhibition toward KB and HepG-2 cells with IC50 values of 25 and 27 nM, respectively. Pileamartine C (1), julandine (4), and cryptopleurine (5) exhibited cytotoxicity against 4 tested cancer cell lines with IC50 values less than 1 µM.

Supporting Information

 
  • References

  • 1 Wink M. Quinolizidine alkaloids: biochemistry, metabolism, and function in plants and cell Suspension cultures. Planta Med 1987; 53: 509-514
  • 2 Donaldson GR, Atkinson MR, Murray AW. Inhibition of protein synthesis in Ehrlich ascites-tumour cells by the phenanthrene alkaloids tylophorine, tylocrebrine and cryptopleurine. Biochem Biophys Res Commun 1968; 31: 104-109
  • 3 Staerk D, Lykkeberg AK, Christensen J, Budnik BA, Abe F, Jaroszewski JW. In vitro cytotoxic activity of phenanthroindolizidine alkaloids from Cynanchum vincetoxicum and Tylophora tanakae against drug-sensitive and multidrug-resistant cancer cells. J Nat Prod 2002; 65: 1299-1302
  • 4 Gao W, Busson S, Grill SP, Gullen EA, Hu YC, Huang X, Zhong S, Kaczmarek C, Gutierrez J, Francis S, Baker DC, Yu S, Cheng YC. Structure-activity studies of phenanthroindolizidine alkaloids as potential antitumor agents. Bioorg Med Chem Lett 2007; 17: 4338-4342
  • 5 Fu Y, Lee SK, Min HY, Lee T, Lee J, Cheng M, Kim S. Synthesis and structure-activity studies of antofine analogues as potential anticancer agents. Bioorg Med Chem Lett 2007; 17: 97-100
  • 6 Sherry RC. Phenanthroindolizidines and phenanthroquinolizidines: promising alkaloids for anti-cancer therapy. Curr Bioact Compd 2009; 5: 2-19
  • 7 Yang CW, Lee YZ, Kang IJ, Barnard DJ, Jan JT, Lin D, Huang CW, Yeh TK, Chao YS, Lee SJ. Identification of phenanthroindolizines and phenanthroquinolizidines as novel potent anti-coronaviral agents for porcine enteropathogenic coronavirus transmissible gastroenteritis virus and human severe acute respiratory syndrome coronavirus. Antiviral Res 2010; 88: 160-168
  • 8 Bhutani KK, Sharma GL, Ali M. Plant based antiamoebic drugs; part I. Antiamoebic activity of phenanthroindolizidine alkaloids; common structural determinants of activity with emetine. Planta Med 1987; 53: 532-536
  • 9 Gopalakrishnan C, Shankaranarayan D, Kameswaran L, Natarajan S. Pharmacological investigations of tylophorine, the major alkaloid of Tylophora indica . Ind J Med Res 1979; 69: 513-520
  • 10 Gopalakrishnan C, Shankaranarayanan D, Nazimudeen SK, Kameswaran L. Effect of tylophorine, a major alkaloid of Tylophora indica, on immunopathological and inflammatory reactions. Ind J Med Res 1980; 71: 940-948
  • 11 Gellert E, Riggs NV. Crytopleurine: and alkaloid of Cryptocarya pleurosperma White & Francis. Aust J Chem 1954; 7: 113-120
  • 12 Luo Y, Liu Y, Luo D, Gao X, Li B, Zhang G. Cytotoxic alkaloids from Boehmeria siamensis . Planta Med 2003; 69: 842-845
  • 13 Cai XF, Jin X, Lee D, Yang YT, Lee K, Hong YS, Lee JH, Lee JJ. Phenanthroquinolizidine alkaloids from the roots of Boehmeria pannosa potently inhibit hypoxia-inducible factor-1 in AGS human gastric cancer cells. J Nat Prod 2006; 69: 1095-1097
  • 14 Krmpotic E, Farnsworth NR, Messmer WM. Cryptopleurine, an active antiviral alkaloid from Boehmeria cylindrica (L.) Sw. (Urticaceae). J Pharm Sci 1972; 61: 1508-1509
  • 15 Al-Shamma A, Drake SD, Guagliardi LE, Mitscher LA, Swayze JK. Antimicrobial alkaloids from Boehmeria cylindrica . Phytochemistry 1982; 21: 485-487
  • 16 Hart NK, Johns SR, Lamberton JA. Minor alkaloids of Boehmeria platyphylla Don. (family Urticaceae). II. Isolation of cryptopleurine and a new seco-phenanthroquinolizidine alkaloid. Aust J Chem 1968; 21: 2579-2581
  • 17 Hoffmann JJ, Luzbetak DJ, Torrance SJ, Cole JR. Cryptopleurine, cytotoxic agent from Boehmeria caudata (Urticaceae) and Cryptocarya laevigata (Lauraceae). Phytochemistry 1978; 17: 1448
  • 18 Doan Thi TA, Trinh Thi TV, Doan Thi Mai H, Le HT, Litaudon M, Chau VM, Pham VC. Pileamartines A and B: alkaloids from Pilea aff. martinii with a new carbon skeleton. Tetrahedron Lett 2018; 59: 1909-1912
  • 19 Diedrich C, Grimme SJ. Systematic investigation of modern quantum chemical methods to predict electronic circular dichroism spectra. Phys Chem A 2003; 107: 2524-2539
  • 20 Ding Y, Li XC, Ferreira D. Theoretical calculation of electronic circular dichroism of the rotationally restricted 3, 8′′-biflavonoid morelloflavone. J Org Chem 2007; 72: 9010-9017
  • 21 Cragg JE, Herbert RB. Synthesis of the alkaloids, 3′,4′-dimethoxy-2-(2-piperidyl)acetophenone, julandine, and cryptopleurine. J Chem Soc Perkin Trans 1 1982; (00) 2487-2490
  • 22 Kim S, Lee T, Lee E, Lee J, Fan GJ, Lee SK, Kim D. Asymmetric total syntheses of (−)-antofine and (−)-cryptopleurine using (R)-(E)-4-(tributylstannyl)but-3-en-2-ol. J Org Chem 2004; 69: 3144-3149
  • 23 Demole E, Demole C. A chemical study of Burley tobacco flavour (Nicotiona tobacum L.) V. Identification and synthesis of the novel terpenoid alkaloids 1, 3, 6, 6-petramethyl-5, 6, 7, 8-tetrahydro-isoquinolin-8-one and 3, 6, 6-trirnethyl-5, 6-dihydro-7H-2-pyrindin-7-one. Helv Chim Acta 1975; 58: 523-531
  • 24 Spartanʼ14. Irvine, CA, USA: Wavefunction; 2013
  • 25 Gaussian 09, Revision B.01. Wallingford, CT, USA: Gaussian; 2010
  • 26 Bruhn T, Schaumlöffel A, Hemberger Y, Pecitelli G. SpecDis version 1.71. Berlin, Germany, 2017. Available at: https://specdis-software.jimdo.com Accessed July 20, 2018
  • 27 Bruhn T, Schaumlöffel A, Hemberger Y, Bringmann G. SpecDis: quantifying the comparison of calculated and experimental electronic circular dichroism spectra. Chirality 2013; 25: 243-249
  • 28 Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983; 65: 55-63