Subscribe to RSS
DOI: 10.1055/a-0828-8654
Whole-Body [18F]-FDG-PET/MRI for Oncology: A Consensus Recommendation[*]
Konsensempfehlungen zur Anwendung der Ganzkörper [18F]-FDG-PET/MRT in der onkologischen BildgebungPublication History
08 October 2018
22 December 2018
Publication Date:
28 February 2019 (online)
Abstract
Combined PET/MR imaging (PET/MRI) was proposed for patient management in 2006 with first commercial versions of integrated whole-body systems becoming available as of 2010. PET/MRI followed the prior evolution of hybrid imaging as attested by the successful adoption of combined PET/CT and SPECT/CT since the early 2000 s. Today, around 150 whole-body PET/MRI systems have become operational worldwide. One of the main application fields of PET/MRI is oncologic imaging. Despite the increasing use of PET/MRI, little governance regarding standardized PET/MRI protocols has been provided to date. Standardization and harmonization of imaging protocols is, however, mandatory for efficient on-site patient management and multi-center studies. This document summarizes consensus recommendations on key aspects of patient referral and preparation, PET/MRI workflow and imaging protocols, as well as reporting strategies for whole-body [18F]-FDG-PET/MRI. These recommendations were created by early adopters and key experts in the field of PET, MRI and PET/MRI. This document is intended to provide guidance for the harmonization and standardization of PET/MRI today and to support wider clinical adoption of this imaging modality for the benefit of patients.
Citation Format
-
Umutlu L, Beyer T, Grueneisen JS et al. Whole-Body [18F]-FDG-PET/MRI for Oncology: A Consensus Recommendation. Fortschr Röntgenstr 2019; 191: 289 – 297
Zusammenfassung
Nach initialen Plänen zur Einführung integrierter PET/MRT-Systeme im Jahre 2006 standen 2010 die ersten kommerziell erwerbbaren Scanner für die klinische Anwendung am Patienten zur Verfügung. Sie folgten damit früheren, bereits etablierten hybriden Bildgebungsmodalitäten, wie der PET/CT und SPECT/CT, bei denen der Vorteil einer kombinierten Analyse molekularer und anatomischer Parameter zur Beantwortung onkologischer Fragestellungen gezeigt werden konnte. Bis dato wurden weltweit ca. 150 PET/MRT-Systeme in Kliniken, Praxen und diversen Forschungsinstitutionen installiert. Anhand der aktuellen Studienlage lässt sich die onkologische Diagnostik weiterhin als Hauptanwendungsgebiet erkennen. Aufgrund der zunehmenden Anwendung der PET/MRT in der Patientenversorgung besteht nun die Notwendigkeit einer Anpassung der Arbeitsabläufe an die Anforderungen des klinischen Alltags sowie einer Standardisierung der Untersuchungsprotokolle an die spezifischen medizinischen Fragestellungen. In dem vorliegenden Manuskript werden Konsensempfehlungen für die Indikationsstellung und Vorbereitung des Patienten sowie die Durchführung und Interpretation einer PET/MRT-Untersuchung dargestellt. Darüber hinaus werden Untersuchungsprotokolle zur Anwendung der Ganzkörper [18F]-FDG-PET/MRT zusammengefasst. Diese Empfehlungen wurden durch Experten in den Bereichen der PET, MRT und PET/MRT-Bildgebung zusammengestellt. Sie sollen zur Standardisierung der [18F]-FDG-PET/MRT-Diagnostik onkologischer Patienten und zu einer breiteren klinischen Akzeptanz dieser Bildgebungsmodalität zum Wohle der Patienten beitragen.
* Published simultaneously in Nuklearmedizin 2019; DOI: 10.1055/a-0830-4453.
-
References
- 1 Beyer T, Freudenberg LS, Czernin J. et al. The future of hybrid imaging-part 3: PET/MR, small-animal imaging and beyond. Insights Imaging 2011; 2: 235-246 . doi:10.1007/s13244-011-0085-4
- 2 Gambhir SS, Czernin J, Schwimmer J. et al. A tabulated summary of the FDG PET literature. J Nucl Med 2001; 42: 1S-93S
- 3 Smith TA. FDG uptake, tumour characteristics and response to therapy: a review. Nucl Med Commun 1998; 19: 97-105
- 4 Kapoor V, McCook BM, Torok FS. An introduction to PET-CT imaging. Radiographics 2004; 24: 523-543 . doi:10.1148/rg.242025724
- 5 Petersen H, Holdgaard PC, Madsen PH. et al. FDG PET/CT in cancer: comparison of actual use with literature-based recommendations. Eur J Nucl Med Mol Imaging 2016; 43: 695-706 . doi:10.1007/s00259-015-3217-0
- 6 Boellaard R, Delgado-Bolton R, Oyen WJ. et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging 2015; 42: 328-354 . doi:10.1007/s00259-014-2961-x
- 7 Pooley RA. AAPM/RSNA physics tutorial for residents: fundamental physics of MR imaging. Radiographics 2005; 25: 1087-1099 . doi:10.1148/rg.254055027
- 8 Kuhl CK, Gieseke J, von Falkenhausen M. et al. Sensitivity encoding for diffusion-weighted MR imaging at 3.0 T: intraindividual comparative study. Radiology 2005; 234: 517-526 . doi:10.1148/radiol.2342031626
- 9 Nensa F, Beiderwellen K, Heusch P. et al. Clinical applications of PET/MRI: current status and future perspectives. Diagn Interv Radiol 2014; 20: 438-447 . doi:10.5152/dir.2014.14008
- 10 Pichler BJ, Kolb A, Nagele T. et al. PET/MRI: paving the way for the next generation of clinical multimodality imaging applications. J Nucl Med 2010; 51: 333-336 . doi:10.2967/jnumed.109.061853
- 11 Wehrl HF, Sauter AW, Divine MR. et al. Combined PET/MR: a technology becomes mature. J Nucl Med 2015; 56: 165-168 . doi:10.2967/jnumed.114.150318
- 12 Wehrl HF, Wiehr S, Divine MR. et al. Preclinical and Translational PET/MR Imaging. J Nucl Med 2014; 55: 11S-18S . doi:10.2967/jnumed.113.129221
- 13 Ziegler SI, Pichler BJ, Boening G. et al. A prototype high-resolution animal positron tomograph with avalanche photodiode arrays and LSO crystals. Eur J Nucl Med 2001; 28: 136-143
- 14 Schlemmer HP, Pichler BJ, Schmand M. et al. Simultaneous MR/PET imaging of the human brain: feasibility study. Radiology 2008; 248: 1028-1035 . doi:10.1148/radiol.2483071927
- 15 Spick C, Herrmann K, Czernin J. 18F-FDG PET/CT and PET/MRI Perform Equally Well in Cancer: Evidence from Studies on More Than 2300 Patients. J Nucl Med 2016; 57: 420-430 . doi:10.2967/jnumed.115.158808
- 16 Czernin J, Ta L, Herrmann K. Does PET/MR Imaging Improve Cancer Assessments? Literature Evidence from More Than 900 Patients. J Nucl Med 2014; 55: 59S-62S . doi:10.2967/jnumed.114.141838
- 17 Bailey DL, Pichler BJ, Guckel B. et al. Combined PET/MRI: Global Warming-Summary Report of the 6th International Workshop on PET/MRI, March 27–29, 2017, Tubingen, Germany. Mol Imaging Biol 2018; 20: 4-20 . doi:10.1007/s11307-017-1123-5
- 18 Sawicki LM, Grueneisen J, Schaarschmidt BM. et al. Evaluation of (1)(8)F-FDG PET/MRI, (1)(8)F-FDG PET/CT, MRI, and CT in whole-body staging of recurrent breast cancer. Eur J Radiol 2016; 85: 459-465 . doi:10.1016/j.ejrad.2015.12.010
- 19 Schaarschmidt BM, Grueneisen J, Heusch P. et al. Does 18F-FDG PET/MRI reduce the number of indeterminate abdominal incidentalomas compared with 18F-FDG PET/CT?. Nucl Med Commun 2015; 36: 588-595 . doi:10.1097/MNM.0000000000000298
- 20 Queiroz MA, Kubik-Huch RA, Hauser N. et al. PET/MRI and PET/CT in advanced gynaecological tumours: initial experience and comparison. Eur Radiol 2015; 25: 2222-2230 . doi:10.1007/s00330-015-3657-8
- 21 Fendler WP, Czernin J, Herrmann K. et al. Variations in PET/MRI Operations: Results from an International Survey Among 39 Active Sites. J Nucl Med 2016; 57: 2016-2021 . doi:10.2967/jnumed.116.174169
- 22 Krause BJ, Beyer T, Bockisch A. et al. FDG-PET/CT in oncology. German Guideline. Nuklearmedizin 2007; 46: 291-301
- 23 Delbeke D, Coleman RE, Guiberteau MJ. et al. Procedure guideline for tumor imaging with 18F-FDG PET/CT 1.0. J Nucl Med 2006; 47: 885-895
- 24 Wagenknecht G, Kaiser HJ, Mottaghy FM. et al. MRI for attenuation correction in PET: methods and challenges. MAGMA 2013; 26: 99-113 . doi:10.1007/s10334-012-0353-4
- 25 Keller SH, Holm S, Hansen AE. et al. Image artifacts from MR-based attenuation correction in clinical, whole-body PET/MRI. MAGMA 2013; 26: 173-181 . doi:10.1007/s10334-012-0345-4
- 26 European Society of Urogenital Radiology (ESUR). ESUR Guidelines: 10.0 Contrast Media Safety Guidelines. 2018 Avalable from: http://www.esur.org/esur-guidelines/
- 27 European Medicines Agency (EMA). Gadolinium containing contrast agents – Assessment report – EMEA/H/A-31/1437. 2017 Available from: https://www.ema.europa.eu/documents/referral/gadolinium-article-31-referral-assessment-report_en.pdf
- 28 Sammet S. Magnetic resonance safety. Abdom Radiol (NY) 2016; 41: 444-451 . doi:10.1007/s00261-016-0680-4
- 29 Leitlinienreport zur DGN-Handlungsempfehlung (S1-Leitlinie). Nuklearmedizinische Bildgebung. Stand: 01/2015 – AWMF-Registernummer: 031-030. Available from: https://www.awmf.org/leitlinien/detail/ll/031-030.html
- 30 Shellock FG. Reference Manual for Magnetic Resonance Safety, Implants and Devices 2018. Shellock R & D Services; 2018
- 31 Kinahan PE, Townsend DW, Beyer T. et al. Attenuation correction for a combined 3D PET/CT scanner. Med Phys 1998; 25: 2046-2053 . doi:10.1118/1.598392
- 32 Quick HH. Integrated PET/MR. J Magn Reson Imaging 2014; 39: 243-258 . doi:10.1002/jmri.24523
- 33 Martinez-Moller A, Souvatzoglou M, Delso G. et al. Tissue classification as a potential approach for attenuation correction in whole-body PET/MRI: evaluation with PET/CT data. J Nucl Med 2009; 50: 520-526 . doi:10.2967/jnumed.108.054726
- 34 Paulus DH, Quick HH, Geppert C. et al. Whole-Body PET/MR Imaging: Quantitative Evaluation of a Novel Model-Based MR Attenuation Correction Method Including Bone. J Nucl Med 2015; 56: 1061-1066 . doi:10.2967/jnumed.115.156000
- 35 Schulz V, Torres-Espallardo I, Renisch S. et al. Automatic, three-segment, MR-based attenuation correction for whole-body PET/MR data. Eur J Nucl Med Mol Imaging 2011; 38: 138-152 . doi:10.1007/s00259-010-1603-1
- 36 Beyer T, Lassen ML, Boellaard R. et al. Investigating the state-of-the-art in whole-body MR-based attenuation correction: an intra-individual, inter-system, inventory study on three clinical PET/MR systems. MAGMA 2016; 29: 75-87 . doi:10.1007/s10334-015-0505-4
- 37 Samarin A, Burger C, Wollenweber SD. et al. PET/MR imaging of bone lesions--implications for PET quantification from imperfect attenuation correction. Eur J Nucl Med Mol Imaging 2012; 39: 1154-1160 . doi:10.1007/s00259-012-2113-0
- 38 Yang J, Jian Y, Jenkins N. et al. Quantitative Evaluation of Atlas-based Attenuation Correction for Brain PET in an Integrated Time-of-Flight PET/MR Imaging System. Radiology 2017; 284: 169-179 . doi:10.1148/radiol.2017161603
- 39 Yang J, Wiesinger F, Kaushik S. et al. Evaluation of Sinus/Edge-Corrected Zero-Echo-Time-Based Attenuation Correction in Brain PET/MRI. J Nucl Med 2017; 58: 1873-1879 . doi:10.2967/jnumed.116.188268
- 40 Koesters T, Friedman KP, Fenchel M. et al. Dixon Sequence with Superimposed Model-Based Bone Compartment Provides Highly Accurate PET/MR Attenuation Correction of the Brain. J Nucl Med 2016; 57: 918-924 . doi:10.2967/jnumed.115.166967
- 41 Oehmigen M, Lindemann ME, Gratz M. et al. Impact of improved attenuation correction featuring a bone atlas and truncation correction on PET quantification in whole-body PET/MR. Eur J Nucl Med Mol Imaging 2018; 45: 642-653 . doi:10.1007/s00259-017-3864-4
- 42 Elschot M, Selnaes KM, Johansen H. et al. The Effect of Including Bone in DIXON-based Attenuation Correction for (18)F-fluciclovine PET/MRI of Prostate Cancer. J Nucl Med 2018; DOI: 10.2967/jnumed.118.208868.
- 43 Drzezga A, Souvatzoglou M, Eiber M. et al. First clinical experience with integrated whole-body PET/MR: comparison to PET/CT in patients with oncologic diagnoses. J Nucl Med 2012; 53: 845-855 . doi:10.2967/jnumed.111.098608
- 44 Boellaard R, Quick HH. Current image acquisition options in PET/MR. Semin Nucl Med 2015; 45: 192-200 . doi:10.1053/j.semnuclmed.2014.12.001
- 45 Brendle C, Schmidt H, Oergel A. et al. Segmentation-based attenuation correction in positron emission tomography/magnetic resonance: erroneous tissue identification and its impact on positron emission tomography interpretation. Invest Radiol 2015; 50: 339-346 . doi:10.1097/RLI.0000000000000131
- 46 Nuyts J, Bal G, Kehren F. et al. Completion of a truncated attenuation image from the attenuated PET emission data. IEEE Trans Med Imaging 2013; 32: 237-246 . doi:10.1109/TMI.2012.2220376
- 47 Nuyts J, Dupont P, Stroobants S. et al. Simultaneous maximum a posteriori reconstruction of attenuation and activity distributions from emission sinograms. IEEE Trans Med Imaging 1999; 18: 393-403 . doi:10.1109/42.774167
- 48 Blumhagen JO, Braun H, Ladebeck R. et al. Field of view extension and truncation correction for MR-based human attenuation correction in simultaneous MR/PET imaging. Med Phys 2014; 41: 022303 . doi:10.1118/1.4861097
- 49 Blumhagen JO, Ladebeck R, Fenchel M. et al. MR-based field-of-view extension in MR/PET: B0 homogenization using gradient enhancement (HUGE). Magn Reson Med 2013; 70: 1047-1057 . doi:10.1002/mrm.24555
- 50 Lindemann ME, Oehmigen M, Blumhagen JO. et al. MR-based truncation and attenuation correction in integrated PET/MR hybrid imaging using HUGE with continuous table motion. Med Phys 2017; 44: 4559-4572 . doi:10.1002/mp.12449
- 51 Catana C. Motion correction options in PET/MRI. Semin Nucl Med 2015; 45: 212-223 . doi:10.1053/j.semnuclmed.2015.01.001
- 52 Catalano OA, Umutlu L, Fuin N. et al. Comparison of the clinical performance of upper abdominal PET/DCE-MRI with and without concurrent respiratory motion correction (MoCo). Eur J Nucl Med Mol Imaging 2018; DOI: 10.1007/s00259-018-4084-2.
- 53 Gratz M, Ruhlmann V, Umutlu L. et al. Impact of MR-based motion correction on clinical PET/MR data of patients with thoracic pathologies. In proc. ISMRM 2017, Apr 21-27 Honolulu, HI, USA: 2017: 3899
- 54 Fuin N, Pedemonte S, Catalano OA. et al. PET/MRI in the Presence of Metal Implants: Completion of the Attenuation Map from PET Emission Data. J Nucl Med 2017; 58: 840-845 . doi:10.2967/jnumed.116.183343
- 55 Paulus DH, Quick HH. Hybrid Positron Emission Tomography/Magnetic Resonance Imaging: Challenges, Methods, and State of the Art of Hardware Component Attenuation Correction. Invest Radiol 2016; 51: 624-634 . doi:10.1097/RLI.0000000000000289
- 56 Eanm. Draft guidelines for radiopharmacy. Eur J Nucl Med Mol Imaging 2003; 30: BP63-BP72
- 57 Committee EP, Busemann Sokole E, Plachcinska A. et al. Routine quality control recommendations for nuclear medicine instrumentation. Eur J Nucl Med Mol Imaging 2010; 37: 662-671 . doi:10.1007/s00259-009-1347-y
- 58 International Atomic Energy Agency (IAEA). Quality Assurance for PET and PET/CT Systems. 2009 Available from https://www-pub.iaea.org/books/iaeabooks/8002/Quality-Assurance-for-PET-and-PET-CT-Systems
- 59 Martinez-Moller A, Eiber M, Nekolla SG. et al. Workflow and scan protocol considerations for integrated whole-body PET/MRI in oncology. J Nucl Med 2012; 53: 1415-1426 . doi:10.2967/jnumed.112.109348
- 60 von Schulthess GK, Veit-Haibach P. Workflow Considerations in PET/MR Imaging. J Nucl Med 2014; 55: 19S-24S . doi:10.2967/jnumed.113.129239
- 61 Kirchner J, Sawicki LM, Suntharalingam S. et al. Whole-body staging of female patients with recurrent pelvic malignancies: Ultra-fast 18F-FDG PET/MRI compared to 18F-FDG PET/CT and CT. PLoS One 2017; 12: e0172553 . doi:10.1371/journal.pone.0172553
- 62 Grueneisen J, Schaarschmidt BM, Heubner M. et al. Implementation of FAST-PET/MRI for whole-body staging of female patients with recurrent pelvic malignancies: A comparison to PET/CT. Eur J Radiol 2015; 84: 2097-2102 . doi:10.1016/j.ejrad.2015.08.010
- 63 Grueneisen J, Sawicki LM, Schaarschmidt BM. et al. Evaluation of a Fast Protocol for Staging Lymphoma Patients with Integrated PET/MRI. PLoS One 2016; 11: e0157880 . doi:10.1371/journal.pone.0157880
- 64 Marth C, Landoni F, Mahner S. et al. Cervical cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2017; 28: iv72-iv83 . doi:10.1093/annonc/mdx220
- 65 Stegger L, Schafers M, Weckesser M. et al. EANM-ESR white paper on multimodality imaging. Eur J Nucl Med Mol Imaging 2008; 35: 677-680 . doi:10.1007/s00259-008-0724-2