RSS-Feed abonnieren
DOI: 10.1055/a-0832-2038
Warum ist die „Anzahl vorzeitiger Todesfälle durch Umweltexpositionen“ nicht angemessen quantifizierbar?
Why is the „Number of Premature Deaths Due to Environmental Exposures“ not Appropriately Quantifiable?Publikationsverlauf
Publikationsdatum:
06. Februar 2019 (online)
Zusammenfassung
In epidemiologischen Studien und deren Anwendung bei Schadstoffregulierungen (z. B. durch WHO, USA, EU) werden Wirkungen von Umweltexpositionen auf Bevölkerungen („Burden Of Disease“, „Krankheitslast“) oft mittels der verursachten „Anzahl vorzeitiger Todesfälle“, d. h. der durch die Exposition zeitlich vorverlagerten Todesfälle, quantifiziert. Ein aktuelles Beispiel ist die Studie von Schneider et al. zu Krankheitslasten durch Stickstoffdioxid (NO2)-Exposition in Deutschland, durchgeführt im Auftrag des Umweltbundesamtes. Die Autoren ermittelten den Anteil der durch die Exposition verursachten vorzeitigen Todesfälle mittels der „Attributablen Fraktion“ (AF). Gleichwohl können die wahren Zahlen vorzeitiger Todesfälle durch NO2 viel größer oder kleiner sein. Tatsächlich hatten Robins und Greenland bereits 1989 gezeigt, dass der AF-Ansatz nicht angemessen ist. Trotz der weitreichenden Bedeutung für Epidemiologie und Public Health wurde ihre wegweisende Arbeit nicht adäquat berücksichtigt, möglicherweise aufgrund der anspruchsvollen mathematischen Argumentation. Unser Beitrag erläutert – mit einfachen Methoden – unbeachtete aber bedeutende Fallstricke. Wir empfehlen, auf das Konzept der „Anzahl vorzeitiger Todesfälle“ zu verzichten und stattdessen die durch die Exposition verlorene Lebenszeit anzugeben, berechnet pro Person. Diese sollte aber nicht für unterschiedliche Todesursachen (Erkrankungen) und/oder Altersverteilungen aufgeschlüsselt werden. Wir zeigen zudem, dass „Disability Adjusted Life Years“ (DALY) kein angemessenes Maß sind, um Expositionswirkungen in der Bevölkerung zu bewerten.
Abstract
Epidemiological studies and their applications in regulations of hazardous substances (e. g. by WHO, USA, EU) often quantify effects of environmental exposures on populations (“burden of disease”) by calculating “numbers of premature deaths due to exposure”. A recent example is the study by Schneider et al., commissioned by the German Federal Environmental Agency (Umweltbundesamt), into the burden of disease caused by exposures to nitrogen dioxide (NO2) in Germany. The authors assessed the proportion of premature deaths due to exposure by the “Attributable Fraction” (AF). However, true numbers of premature deaths caused by NO2 could be much higher or smaller. Indeed, Robins and Greenland showed in 1989 that the AF approach is inappropriate. Despite its far-reaching relevance for epidemiology and public health, their seminal work was not adequately taken into consideration, possibly due to its sophisticated level of mathematical argumentation. Our contribution illustrates – with simple examples – unappreciated but important pitfalls. We recommend that the concept of “number of premature deaths” be abandoned and “years of life lost due to exposure” be provided instead, calculated per capita. However, “years of life lost due to exposure” should not be stratified by age or causes of death (diseases). Furthermore, we show that “Disability Adjusted Life Years” (DALY) do not provide a meaningful measure to evaluate the effect of environmental exposures on populations.
-
Literatur
- 1 Schneider A, Cyrys J, Breitner S et al. Quantifizierung von umweltbedingten Krankheitslasten aufgrund der Stickstoffdioxid-Exposition in Deutschland. Abschlussbericht im Auftrag des Umweltbundesamtes, überarbeitete Version (Februar 2018). Herausgeber: Umweltbundesamt 2018 ISSN 1862-4340. URL https:// www.umweltbundesamt.de/sites/default/files/medien/421/publikationen/abschlussbericht_no2_krankheitslast_final_2018_03_05.pdf
- 2 Robins JM, Greenland S. Estimability and estimation of excess and etiologic fractions. Statistics in Medicine 1989; 8: 845-859
- 3 Beyea J, Greenland S. The importance of specifying the underlying biological model in estimating the probability of causation. Health Physics 1999; 76: 269-274
- 4 Greenland S. Relation of probability of causation to relative risk and doubling dose: a methodologic error that has become a social problem. American Journal of Public Health 1999; 89: 1166-1169
- 5 Kowall B, Stang A. Stolpersteine bei der Interpretation des populationsattributablen Risikos. Gesundheitswesen 2018; 80: 149-153
- 6 Morfeld P. Years of Life Lost due to exposure: Causal concepts and empirical shortcomings. Epidemiologic Perspectives & Innovations: EP+I 2004; 1: 5. URL http://www.biomedcentral.com/1742-5573/1/5
- 7 Robins JM, Greenland S. Estimability and estimation of expected years of life lost due to a hazardous exposure. Statistics in Medicine 1991; 10: 79-93
- 8 Prüss-Üstün A, Mathers C, Corvalán C. et al. Assessing the environmental burden of disease at national and local levels: Introduction and methods. Environmental burden of disease series. World Health Organization; 2003. ISBN 92 4 154620. URL http://www.who.int/quantifying_ehimpacts/publications/en/9241546204.pdf
- 9 Murray CJL, Lopez AD. Measuring global health: motivation and evolution of the Global Burden of Disease Study. Lancet 2017; 390: 1460-1464
- 10 GBD 2015 DALY and HALE Collaborators . Global, regional, and national disability-adjusted life-years (DALY) for 315 diseases and injuries and healthy life expectancy (HALE), 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016; 388: 1603-1658
- 11 COMEAP . The Mortality Effects of Long-Term Exposure to Particulate Air Pollution in the United Kingdom. Health Protection Agency; United Kingdom: 2010. URL https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/304641/COMEAP_mortality_effects_of_long_term_exposure.pdf
- 12 Rothman KJ, Greenland S, Lash TL. Modern Epidemiology. 2. Auflage Philadelphia: Lippincott, Williams and Wilkins; 2008
- 13 Murray CJL, Ezzati M, Lopez AD et al. Comparative quantification of health risks: Conceptual framework and methodological issues. Population Health Metrics 2003; URL http://www.pophealthmetrics.com/content/1/1/1
- 14 Rabl A. Interpretation of air pollution mortality: number of deaths or years of life lost?. Journal of the Air & Waste Management Association 2003; 53: 41-50
- 15 Rabl A. Analysis of air pollution mortality in terms of life expectancy changes: relation between time series, intervention, and cohort studies. Environmental Health: A Global Access Science Source 2006; 5: 1-11
- 16 Héroux ME, Anderson HR, Atkinson R. et al. Quantifying the health impacts of ambient air pollutants: recommendations of a WHO/Europe project. Int J Public Health 2015; 60: 619-627
- 17 Morfeld P, Erren T. Quantifying the health impacts of ambient air pollutants: methodological errors must be avoided. Int J Public Health 2016; 61: 383-384 mit Antwort der Autoren
- 18 Morfeld P, Erren TC. Premature deaths attributed to ambient air pollutants: let us interpret the Robins-Greenland theorem correctly. Int J Public Health 2017; 62: 337-338 mit Antwort der Autoren
- 19 Mansournia MA, Altmann DG. Population attributable fraction. BMJ 2018; 360: k757. doi:10.1136/bmj.k757
- 20 Greenland S. Concepts and pitfalls in measuring and interpreting attributable fractions, prevented fractions, and causation probabilities. Annals of Epidemiology 2015; 25: 155-161
- 21 Heidrich J, Wellmann J, Heuschmann PU. et al. Mortality and morbidity from coronary heart disease attributable to passive smoking. European Heart Journal 2007; 28: 2498-2502. doi:10.1093/eurheartj/ehm151
- 22 Burnett R, Chen H, Szyszkowicz M. et al. Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter. Proc Natl Acad Sci USA 2018; 115: 9592-9597. doi:10.1073/pnas.1803222115
- 23 Allison DB, Brown AW, George BJ. et al. A tragedy of errors. Nature 2016; 530: 27-29