Nuklearmedizin 2019; 58(03): 272-278
DOI: 10.1055/a-0835-5746
Original Article
© Georg Thieme Verlag KG Stuttgart · New York

The combination of 13N-ammonia and 18F-FDG PET/CT in the identification of metabolic phenotype of primary human brain tumors

Die Kombination von 13N-Ammoniak und 18F-FDG PET / CT zur Identifizierung des metabolischen Phänotyps von primären humanen Gehirntumoren
Chang Yi
1   Department of Nuclear Medicine, the First Affiliated Hospital of Sun Yat-Sen University
,
Xinchong Shi
1   Department of Nuclear Medicine, the First Affiliated Hospital of Sun Yat-Sen University
,
Donglan Yu
2   Department of Medical Engineering, the First Affiliated Hospital of Sun Yat-Sen University
,
Ganhua Luo
1   Department of Nuclear Medicine, the First Affiliated Hospital of Sun Yat-Sen University
,
Bing Zhang
1   Department of Nuclear Medicine, the First Affiliated Hospital of Sun Yat-Sen University
,
Qiao He
1   Department of Nuclear Medicine, the First Affiliated Hospital of Sun Yat-Sen University
,
Xiangsong Zhang
1   Department of Nuclear Medicine, the First Affiliated Hospital of Sun Yat-Sen University
› Author Affiliations
Further Information

Publication History

02 July 2018

15 January 2019

Publication Date:
17 April 2019 (online)

Abstract

Aim This pilot study made a preliminary attempt to distinguish different metabolic phenotypes of primary human brain tumors with dual tracer 13N-ammonia and 18F-FDG.

Methods 74 patients were included in this study including 12 benign meningiomas (B-MEN), 4 malignant meningiomas (M-MEN), 15 low-grade gliomas (LGG), 32 high-grade gliomas (HGG) and 11 primary central nervous system lymphomas (PCNSL). All patients underwent 13N-ammonia and 18F-FDG PET imaging. Semi-quantification analysis by tumor-to-gray matter (T/G) ratios was used for the evaluation of tracer uptakes. After the calculation of canonical discriminant functions, cross validation was done for all cases to evaluate the differential efficacy of dual tracers.

Results According to the visual analysis, B-MEN were characterized by lower uptake of 18F-FDG and higher uptake of 13N-ammonia, while PCNSLs displayed contrary results. Both M-MEN and HGG had higher uptake of 18F-FDG and 13N-ammonia, while LGG displayed negative results for both tracers. According to the T/G ratios analysis, the accuracy of predicted tumor classification by means of canonical discriminant analysis for B-MEN, LGG, HGG and PCNSL was 91.7 %, 100 %, 84.4 % and 93.3 % respectively; the overall accuracy was 90.5 %.

Conclusion The combination of dual tracer 13N-ammonia and 18F-FDG has a certain potential in distinguishing different types of brain tumors (meningiomas, gliomas and PCNSL). However, an advantage of the additional use of 13N-ammonia PET compared to a combined diagnosis with MRI and 18F-FDG PET could not be demonstrated and requires further studies.

Zusammenfassung

Ziel In dieser Pilotstudie wurde ein erster Versuch unternommen, verschiedene metabolische Phänotypen von primären humanen Gehirntumoren mit dem dualen Tracer 13N-Ammoniak und 18F-FDG zu unterscheiden.

Methoden In diese Studie wurden 74 Patienten eingeschlossen, davon hatten 12 benigne Meningeome (B-MEN), 4 maligne Meningeome (M-MEN), 15 niedriggradige Gliome (LGG), 32 hochgradige Gliome (HGG) und 11 primäre ZNS-Lymphome (PCNSL). Bei allen Patienten wurden PET-Aufnahmen mit 13N-Ammoniak- und 18F-FDG durchgeführt. Für die Bewertung der Tracer-Aufnahmen wurde eine semi-quantitative Analyse mittels Ratio des Tumors zur grauen Substanz (T/G) verwendet. Nach der Berechnung der kanonischen Diskriminanzfunktionen wurde für alle Fälle eine Kreuzvalidierung durchgeführt, um die unterschiedliche Leistungsfähigkeit von dualen Tracern zu bewerten.

Ergebnisse Gemäß der visuellen Analyse wurden B-MEN durch eine geringere Aufnahme von 18F-FDG und eine höhere Aufnahme von 13N-Ammoniak charakterisiert, während PCNSL konträre Ergebnisse zeigten. Sowohl M-MEN als auch HGG hatten eine höhere Aufnahme von 18F-FDG und 13N-Ammoniak, während LGG für beide Tracer negative Resultate zeigten. Gemäß der T/G-Ratio-Analyse betrug die Genauigkeit der vorhergesagten Tumorklassifikation mittels kanonischer Diskriminanzanalyse für B-MEN 91,7 %, für LGG 100 %, für HGG 84,4 % und für PCNSL 93,3 %. Die Gesamtgenauigkeit betrug 90,5 %.

Schlussfolgerung Die Kombination von dualem Tracer 13N-Ammoniak und 18F-FDG hat ein gewisses Leistungsvermögen hinsichtlich der Unterscheidung verschiedener Arten von Gehirntumoren (Meningeome, Gliome und PCNSL). Ein Vorteil des zusätzlichen Einsatzes von 13N-Ammoniak-PET gegenüber der kombinierten Diagnose mittels MRI und 18F-FDG-PET konnte jedoch nicht gezeigt werden und erfordert weitere Untersuchungen.

 
  • References

  • 1 Lu J, Tan M, Cai Q. The Warburg effect in tumor progression: mitochondrial oxidative metabolism as an anti-metastasis mechanism. Cancer Lett 2015; 356: 156-164
  • 2 Locasale JW. Serine, glycine and the one-carbon cycle: cancer metabolism in full circle. Nat Rev Cancer 2013; 13: 572-583
  • 3 Alifieris C, Trafalis DT. Glioblastoma multiforme: Pathogenesis and treatment. Pharmacol Ther 2015; 152: 63-82
  • 4 Halbrook CJ, Lyssiotis CA. Employing Metabolism to Improve the Diagnosis and Treatment of Pancreatic Cancer. Cancer Cell 2017; 31: 5-19
  • 5 Griffin JL, Shockcor JP. Metabolic profiles of cancer cells. Nat Rev Cancer 2004; 4: 551-561
  • 6 Verma A, Kumar I, Verma N. et al. Magnetic resonance spectroscopy – Revisiting the biochemical and molecular milieu of brain tumors. BBA Clin 2016; 5: 170-178
  • 7 Rosi A, Ricci-Vitiani L, Biffoni M. et al. 1H NMR spectroscopy of glioblastoma stem-like cells identifies alpha-aminoadipate as a marker of tumor aggressiveness. NMR Biomed 2015; 28: 317-326
  • 8 Xiao X, Hu M, Liu M. et al. 1H NMR Metabolomics Study of Spleen from C57BL/6 Mice Exposed to Gamma Radiation. Metabolomics (Los Angel) 2016; 6: 1-11
  • 9 Marszałek R, Pisklak M, Jankowski W. et al. NMR and gas chromatography studies of lyophilized human brain tumors. Acta Pol Pharm 2010; 67: 129-136
  • 10 Kim MM, Parolia A, Dunphy MP. et al. Non-invasive metabolic imaging of brain tumours in the era of precision medicine. Nat Rev Clin Oncol 2016; 13: 725-739
  • 11 Hutterer M, Hattingen E, Palm C. et al. Current standards and new concepts in MRI and PET response assessment of antiangiogenic therapies in high-grade glioma patients. Neuro Oncol 2015; 17: 784-800
  • 12 Tsitsia V, Svolou P, Kapsalaki E. et al. Multimodality-multiparametric brain tumors evaluation. Hell J Nucl Med 2017; 20: 57-61
  • 13 Xiangsong Z, Xingchong S, Chang Y. et al. 13N-NH3 versus F-18 FDG in detection of intracranial meningioma: initial report. Clin Nucl Med 2011; 36: 1003-1006
  • 14 Xiangsong Z, Weian C, Dianchao Y. et al. Usefulness of (13)N-NH (3) PET in the evaluation of brain lesions that are hypometabolic on (18)F-FDG PET. J Neurooncol 2011; 105: 103-107
  • 15 Xiangsong Z, Weian C. Differentiation of recurrent astrocytoma from radiation necrosis: a pilot study with 13N-NH3 PET. J Neurooncol 2007; 82: 305-311
  • 16 Shi X, Liu Y, Zhang X. et al. The Comparison of 13N-Ammonia and 18F-FDG in the Evaluation of Untreated Gliomas. Clin Nucl Med 2013; 38: 522-526
  • 17 Shi X, Zhang X, Yi C. et al. The combination of 13N-ammonia and 18F-FDG in predicting primary central nervous system lymphomas in immunocompetent patients. Clin Nucl Med 2013; 38: 98-102
  • 18 Albert NL, Weller M, Suchorska B. et al. Response Assessment in Neuro-Oncology working group and European Association for Neuro-Oncology recommendations for the clinical use of PET imaging in gliomas. Neuro Oncol 2016; 18: 1199-1208
  • 19 Langen KJ, Galldiks N, Hattingen E. et al. Advances in neuro-oncology imaging. Nat Rev Neurol 2017; 13: 279-289
  • 20 Cooper AJ. 13N as a tracer for studying glutamate metabolism. Neurochem Int 2011; 59: 456-464
  • 21 Northrop NA, Halpin LE, Yamamoto BK. Peripheral ammonia and blood brain barrier structure and function after methamphetamine. Neuropharmacology 2016; 107: 18-26
  • 22 Huang Y, Rajappa P, Hu W. et al. A proangiogenic signaling axis in myeloid cells promotes malignant progression of glioma. J Clin Invest 2017; 127: 1826-1838
  • 23 Stadlbauer A, Zimmermann M, Kitzwögerer M. et al. MR Imaging-derived Oxygen Metabolism and Neovascularization Characterization for Grading and IDH Gene Mutation Detection of Gliomas. Radiology 2017; 283: 799-809
  • 24 Ryu JK, McLarnon JG. Pyruvate blocks blood-brain barrier disruption, lymphocyte infiltration and immune response in excitotoxic brain injury. Am J Neurodegener Dis 2016; 5: 69-73
  • 25 Sorensen M, Munk OL, Keiding S. Backflux of ammonia from brain to blood in human subjects with and without hepatic encephalopathy. Metab Brain Dis 2009; 24: 237-242
  • 26 Sun HL, Deng DP, Pan XH. et al. A sub-threshold dose of pilocarpine increases glutamine synthetase in reactive astrocytes and enhances the progression of amygdaloid-kindling epilepsy in rats. Neuroreport 2016; 27: 213-219
  • 27 Fuente-Martín E, García-Cáceres C, Argente-Arizón P. et al. Ghrelin Regulates Glucose and Glutamate Transporters in Hypothalamic Astrocytes. Sci Rep 2016; 6: 23673
  • 28 Tardito S, Oudin A, Ahmed SU. et al. Glutamine synthetase activity fuels nucleotide biosynthesis and supports growth of glutamine-restricted glioblastoma. Nat Cell Biol 2015; 17: 1556-1568
  • 29 Metzler B, Gfeller P, Guinet E. Restricting Glutamine or Glutamine-Dependent Purine and Pyrimidine Syntheses Promotes Human T Cells with High FOXP3 Expression and Regulatory Properties. J Immunol 2016; 196: 3618-3630
  • 30 Chien WW, Le Beux C, Rachinel N. et al. Differential mechanisms of asparaginase resistance in B-type acute lymphoblastic leukemia and malignant natural killer cell lines. Sci Rep 2015; 5: 8068
  • 31 Collins CL, Wasa M, Souba WW. et al. Regulation of glutamine synthetase in human breast carcinoma cells and experimental tumors. Surgery 1997; 122: 451-463 discussion 463–464
  • 32 Kung HN, Marks JR, Chi JT. Glutamine synthetase is a genetic determinant of cell type-specific glutamine independence in breast epithelia. PLoS Genet 2011; 7: e1002229
  • 33 Louis DN, Ohgaki H, Wiestler OD. et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 2007; 114: 97-109
  • 34 Chang Steven D., Veeravagu Anand. Current Management of Central Nervous System Meningiomas. New York: Nova Science Publishers, Inc.; 2016
  • 35 Juhász C, Dwivedi S, Kamson DO. et al. Comparison of amino acid positron emission tomographic radiotracers for molecular imaging of primary and metastatic brain tumors. Mol Imaging 2014; 13
  • 36 Keiding S, Sørensen M, Bender D. et al. Brain metabolism of 13N-ammonia during acute hepatic encephalopathy in cirrhosis measured by positron emission tomography. Hepatology 2006; 43: 42-50
  • 37 Hsu B, Hu LH, Yang BH. et al. SPECT myocardial blood flow quantitation toward clinical use: a comparative study with 13N-Ammonia PET myocardial blood flow quantitation. Eur J Nucl Med Mol Imaging 2017; 44: 117-128
  • 38 Herholz K, Coope D, Jackson A. Metabolic and molecular imaging in neuro-oncology. Lancet Neurol 2007; 6: 711-724
  • 39 Forst DA, Nahed BV, Loeffler JS. et al. Low-Grade Gliomas. Oncologist 2014; 19: 403-413