Osteologie 2019; 28(02): 145-152
DOI: 10.1055/a-0836-0458
Originalarbeit
Georg Thieme Verlag KG Stuttgart · New York

Zusammenhang zwischen Sarkopenie und Knochendichte – eine Querschnittsuntersuchung mit Männern 72 Jahre + mit Sarkopenie

Association of Sarcopenia and Osteopenia – a crossectional study with men 72 years + with Sarcopenia
Wolfgang Kemmler
1   Institut für Medizinische Physik, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU)
,
Regina Straub
1   Institut für Medizinische Physik, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU)
,
Matthias Kohl
2   Fakultät Medical and Life Sciences, Fachhochschule Furtwangen
,
Simon von Stengel
1   Institut für Medizinische Physik, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU)
› Author Affiliations
Further Information

Publication History

11 January 2019

17 January 2019

Publication Date:
24 May 2019 (online)

Zusammenfassung

Ziel der Untersuchung war es, den Zusammenhang zwischen Sarkopenie und Osteoporose bei älteren Männern zu erfassen.

Selbstständig lebende Männer, 72 Jahre + mit einer morphometrischen Sarkopenie (n = 78), wurden in die Untersuchung eingeschlossen. Mittels multipler Regressionsanalyse wurde insb. der Erklärungsbeitrag der Sarkopeniekriterien wie „Handkraft“, „Gehgeschwindigkeit“ und „skelettaler Muskelmassenindex“ auf die Knochendichte (BMD) an LWS und Hüfte (tHip) untersucht. Daneben wurden Unterschiede für die BMD zwischen Sarkopenie und Prä-Sarkopenie evaluiert.

In der Analyse wurden geringe aber signifikante Erklärungsbeiträge der Größen „fettfreie Masse“ (r2 = .06, p = .001) und „Körperfettanteil“ (r2 = .04, p = .011) auf die BMD-tHip erfasst. Als finaler Parameter der Regressionsanalyse für die BMD-LWS verblieb die Gehgeschwindigkeit, die allerdings keinen relevanten Erklärungsbeitrag (r2 = .03, p = .113) liefert. Unterschiede für die BMD an LWS und Hüfte zwischen Männern mit Sarkopenie vs. Prä-Sarkopenie wurden nicht erfasst (p ≥ .95).

Für selbstständig lebende Männer 72 Jahre + mit morphometrischer (Prä-Sarkopenie) oder morphometrisch-funktioneller Sarkopenie scheint kein erhöhtes Osteoporose-Risiko zu bestehen.

Abstract

Introduction There is some evidence that due to muscle-bone interaction, Sarcopenia might be closely related to Osteopenia and Osteoporosis in older people. The objective of the present article was thus to (1) determine the association between Sarcopenia criteria and bone mineral density (BMD), (2) to determine differences in BMD between Pre-Sarcopenia and Sarcopenia and (3) to consider whether there is an increased risk of Osteopenia and Osteoporosis in community dwelling older men with Sarcopenia.

Methods Seventy-eight community dwelling men 72 years and older with Pre-Sarcopenia or Sarcopenia (39 each) according to the 2010 European Working Group on Sarcopenia in Older People (EWGSOP-I) were included in the study. Stepwise multivariate regression analysis was conducted to determine the relative contribution of sarcopenia criteria (ie. skeletal muscle mass index, handgrip-strength, habitual gait speed) on BMD of the lumbar spine (LS) and total hip (tHip) area. Further, differences in BMD-LS and tHip were compared between men with Pre-Sarcopenia and Sarcopenia. Osteopenia (–1.0 to –2.5 standard deviations (SD) T-Score) and Osteoporosis (≥ 2.5 SD T-Score) were defined according to WHO.

Results We observed a low but significant explanatory contribution of “fat free mass” (r2 = .06, p = .001) and “body fat rate” (r2 = .04, p = .011), both positively associated with the BMD of the total hip. Apart from “habitual gait speed” (r2 = .03, p = .113) no further parameters contributed to the final model of BMD-LS. Differences in BMD at the tHip or LS were not determined when comparing men with Pre-Sarcopenia versus Sarcopenia (p ≥ .95). Further, we did not observe a higher prevalence for Osteopenia or Osteoporosis in the present cohort.

Conclusion In summary, the association of parameters presently representing Sarcopenia and Osteoporosis was quite weak in this cohort. Thus, we conclude that at least in community-dwelling men 72 years and older with Sarcopenia according to the EWGSOP-I definition there is no relevantly increased risk of osteopenia and osteoporosis. However, it is doubtful whether this result can be transferred to corresponding older women or institutionalized older people.

 
  • Literatur

  • 1 DiGirolamo DJ, Kiel DP, Esser KA. Bone and skeletal muscle: neighbors with close ties. J Bone Miner Res 2013; 28 (07) 1509-1518 PubMed PMID: 23630111 Pubmed Central PMCID: 4892934
  • 2 Laurent MR, Dubois V, Claessens F. et al. Muscle-bone interactions: From experimental models to the clinic?. A critical update. Molecular and cellular endocrinology 2016; 432: 14-36 PubMed PMID: 26506009
  • 3 Abou Sawan S, Mazzulla M, Brooks J. et al. ‘Engineering physiology’ to understand the post-exercise biochemical milieu: mixing it up with anabolic hormones. The Journal of physiology 2016; 594 (02) 263-264 PubMed PMID: 26767888 Pubmed Central PMCID: 4713736
  • 4 Frost HM. The role of changes in mechanical usage set points in the pathogenesis of osteoporosis. J Bone Miner Res 1992; 7 (03) 253-261 PubMed PMID: 1585826
  • 5 Cruz-Jentoft AJ, Bahat G, Bauer J. et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing 12/2019; 48 (01) 16-31 PubMed PMID: 30312372
  • 6 DVO Prophylaxe, Diagnostik und Therapie der OSTEOPOROSE bei postmenopausalen Frauen und bei Männern Leitlinie_des_Dachverbands_der_Deutschsprachigen_Wissenschaft-lichen_Osteologischen_Gesellschaften_e. V., Editor. Stuttgart: Schattauer; 2017
  • 7 Elhakeem A, Hartley A, Luo Y. et al. Lean mass and lower limb muscle function in relation to hip strength, geometry and fracture risk indices in community-dwelling older women. Osteoporos Int; 2018 PubMed PMID: 30552442
  • 8 He H, Liu Y, Tian Q. et al. Relationship of sarcopenia and body composition with osteoporosis. Osteoporos Int 2016; 27 (02) 473-82 PubMed PMID: 26243357
  • 9 Verschueren S, Gielen E, O‘Neill TW. et al. Sarcopenia and its relationship with bone mineral density in middle-aged and elderly European men. Osteoporos Int 2013; 24 (01) 87-98 PubMed PMID: 22776861
  • 10 Verschueren S, Bogaerts A, Delecluse C. et al. Effects of One Year Vibration loading on muscle Strength and Hip Density in Postmenopausal Women. JBMR 2008; 21 Suppl (09) S152
  • 11 Cruz-Jentoft AJ, Baeyens JP, Bauer JM. et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing 07/2010; 39 (04) 412-23 PubMed PMID: 20392703 Pubmed Central PMCID: 2886201 Epub 2010/04/16. eng
  • 12 Kemmler W, Teschler M, Weissenfels A. et al. Prevalence of sarcopenia and sarcopenic obesity in older German men using recognized definitions: high accordance but low overlap!. Osteoporos Int 2017; 28 (06) 1881-1891 PubMed PMID: 28220197
  • 13 Kemmler W, von Stengel S, Schoene D. Longitudinal changes in muscle mass and function in older men at increased risk for sarcopenia – the FrOST-study. JOFA; 2019 accepted for publication
  • 14 WHO Assessment of osteoporotic fracture risk and its application to screening for postmenopausal osteoporosis. Geneva: World Health Organization; 1994 Report No.: Technical Report Series no. 843
  • 15 Griffith JF. Identifying osteoporotic vertebral fracture. Quantitative imaging in medicine and surgery 2015; 5 (04) 592-602 PubMed PMID: 26435923 Pubmed Central PMCID: 4559972
  • 16 Fielding RA, Vellas B, Evans WJ. et al. Sarcopenia: an undiagnosed condition in older adults. Current consensus definition: prevalence, etiology, and consequences. International working group on sarcopenia. J Am Med Dir Assoc 2011; 12 (04) 249-256 PubMed PMID: 21527165 Pubmed Central PMCID: 3377163 Epub 2011/04/30. eng
  • 17 Kemmler W, von Stengel S, Kohl M. Developing sarcopenia criteria and cutoffs for an older Caucasian cohort – a strictly biometrical approach. Clin Interv Aging 2018; 13: 1365-1373 PubMed PMID: 30122908 Pubmed Central PMCID: 6078090
  • 18 Baumgartner RN, Koehler KM, Gallagher D. et al. Epidemiology of sarcopenia among the elderly in New Mexico. Am J Epidemiol 1998; 15 147 (08) 755-763 PubMed PMID: 9554417
  • 19 Studenski SA, Peters KW, Alley DE. et al. The FNIH sarcopenia project: rationale, study description, conference recommendations, and final estimates. J Gerontol A Biol Sci Med Sci 2014; 69 (05) 547-558 PubMed PMID: 24737557 Pubmed Central PMCID: 3991146
  • 20 Kemmler W, Bebenek M, von Stengel S. et al. Peak-bone-mass development in young adults: effects of study program related levels of occupational and leisure time physical activity and exercise. A prospective 5-year study. Osteoporos Int 2014; 26 (02) 653-62 PubMed PMID: 25288444
  • 21 Kemmler W, Weineck J, Kalender WA. et al. The effect of habitual physical activity, non-athletic exercise, muscle strength, and VO2max on bone mineral density is rather low in early postmenopausal osteopenic women. J Musculoskelet Neuronal Interact 2004; 4 (03) 325-334 PubMed PMID: 15615501 Epub 2004/12/24. eng
  • 22 McAuley E, Konopack JF, Motl RW. et al. Measuring disability and function in older women: psychometric properties of the late-life function and disability instrument. J Gerontol A Biol Sci Med Sci 2005; 60 (07) 901-909 PubMed PMID: 16079215
  • 23 R-Core-Team R A language and environment for statistical computing. In: R Foundation for Statistical Computing, Editor. Vienna, Austria: https://www.R-project.org/ 2017
  • 24 Ahn SH, Lee SH, Kim H. et al. Different relationships between body compositions and bone mineral density according to gender and age in Korean populations (KNHANES 2008–2010). J Clin Endocrinol Metab 2014; 99 (10) 3811-3820 PubMed PMID: 24960546
  • 25 Gonnelli S, Caffarelli C, Cappelli S. et al. Gender-specific associations of appendicular muscle mass with BMD in elderly Italian subjects. Calcif Tissue Int 2014; 95 (04) 340-348 PubMed PMID: 25139040
  • 26 Chiu GR, Araujo AB, Travison TG. et al. Relative contributions of multiple determinants to bone mineral density in men. Osteoporos Int 2009; 20 (12) 2035-2047 PubMed PMID: 19319620 Pubmed Central PMCID: 2836411
  • 27 Pereira FB, Leite AF, de Paula AP. Relationship between pre-sarcopenia, sarcopenia and bone mineral density in elderly men. Archives of endocrinology and metabolism 2015; 59 (01) 59-65 PubMed PMID: 25926116
  • 28 Travison TG, Araujo AB, Esche GR. et al. Lean mass and not fat mass is associated with male proximal femur strength. J Bone Miner Res 2008; 23 (02) 189-198 PubMed PMID: 17922610 Pubmed Central PMCID: 2665700
  • 29 Bevier WC, Wiswell RA, Pyka G. et al. Relationship of body composition, muscle strength, and aerobic capacity to bone mineral density in older men and women. J Bone Miner Res 1989; 4 (03) 421-432 PubMed PMID: 2763878
  • 30 Cauley JA, Fullman RL, Stone KL. et al. Factors associated with the lumbar spine and proximal femur bone mineral density in older men. Osteoporos Int 2005; 16 (12) 1525-1537 PubMed PMID: 15889316
  • 31 McGrath RP, Kraemer WJ, Vincent BM. et al. Muscle Strength Is Protective Against Osteoporosis in an Ethnically Diverse Sample of Adults. J Strength Cond Res 2017; 31 (09) 2586-2589 PubMed PMID: 28658086
  • 32 Foley KT, Owings TM, Pavol MJ. et al. Maximum grip strength is not related to bone mineral density of the proximal femur in older adults. Calcif Tissue Int 1999; 64 (04) 291-294 PubMed PMID: 10089220
  • 33 Palombaro KM, Hack LM, Mangione KK. et al. Gait variability detects women in early postmenopause with low bone mineral density. Phys Ther 2009; 89 (12) 1315-1326 PubMed PMID: 19833786
  • 34 Lindsey C, Brownbill RA, Bohannon RA. et al. Association of physical performance measures with bone mineral density in postmenopausal women. Arch Phys Med Rehabil 2005; 86 (06) 1102-1107 PubMed PMID: 15954047
  • 35 Bohannon RW, Williams Andrews A. Normal walking speed: a descriptive meta-analysis. Physiotherapy 2011; 97 (03) 182-189 PubMed PMID: 21820535
  • 36 Gunther CM, Burger A, Rickert M. et al. Grip strength in healthy caucasian adults: reference values. The Journal of hand surgery 2008; 33 (04) 558-565 PubMed PMID: 18406961
  • 37 Ribom EL, Mellstrom D, Ljunggren O. et al. Population-based reference values of handgrip strength and functional tests of muscle strength and balance in men aged 70–80 years. Archives of gerontology and geriatrics 2011; 53 (02) e114-e117 PubMed PMID: 20708281
  • 38 Steiber N. Strong or Weak Handgrip?. Normative Reference Values for the German Population across the Life Course Stratified by Sex, Age, and Body Height. PLoS One 2016; 11 (10) e0163917 PubMed PMID: 27701433 Pubmed Central PMCID: 5049850
  • 39 Hadji P, Klein S, Gothe H. et al. The epidemiology of osteoporosis – Bone Evaluation Study (BEST): an analysis of routine health insurance data. Dtsch Arztebl Int 2013; 110 (04) 52-7 PubMed PMID: 23413388 Pubmed Central PMCID: 3570954
  • 40 Haussler B, Gothe H, Gol D. et al. Epidemiology, treatment and costs of osteoporosis in Germany – the BoneEVA Study. Osteoporos Int 2007; 18 (01) 77-84 PubMed PMID: 17048064 Epub 2006/10/19. eng
  • 41 Scheidt-Nave C, Banzer D, Abendroth K. Schlussbericht Multizentrische Studie zu Verteilung, Determination und prädiktivem Wert der Knochendichte in der deutschen Bevölkerung. Förderprojekt des Bundesministeriums für Forschung und Technologie. 1997