Anästhesiol Intensivmed Notfallmed Schmerzther 2019; 54(07/08): 496-506
DOI: 10.1055/a-0853-5456
Fortbildung
Georg Thieme Verlag KG Stuttgart · New York

Pharmakokinetik bei Kindern: Worauf kommt es bei der korrekten Medikamentendosierung an?

Pharmacokinetics in Children – What is Important for Correct Drug Dosage?
Frank Fideler
Further Information

Publication History

Publication Date:
25 July 2019 (online)

Zusammenfassung

Kinder sind in der Anästhesie eine seltene Patientengruppe. Um Medikamentenfehldosierungen zu vermeiden, sind genaue Kenntnisse über Aufnahme, Verteilung, Verstoffwechselung und Ausscheidung der verwendeten Wirkstoffe wesentlich. Auch bedarf es ausreichender Erfahrung mit pharmakokinetischen Variationen oder Komedikationen innerhalb der verschiedenen Altersklassen, um patientenadaptiert eine korrekte Dosisapplikation zu ermöglichen.

Abstract

Under- or overdosage of medication can lead to severe side effects in children. To avoid this, precise knowledge of age-specific liberation, absorption, distribution, metabolism and excretion – LADME for short – is necessary. Absorption can take place intravenously, orally, rectally, intranasally, transdermally or epidurally/caudally and is associated with numerous special features in children, depending on age and route of application. The distribution in children is faster due to more permeable organ barriers between individual organs and must be adapted for hydrophilic and lipophilic drugs to the patientʼs age as well as their fat and fat-free body parts. Drug biotransformation takes place through Phase I and Phase II reactions, predominantly in the liver and kidneys. The cytochrome P450 (CYP450) enzyme system is the most important system for this and requires dose adjustment for numerous drugs in the first phase of life. Due to immature kidney function, all drugs with high renal clearance have a prolonged duration of action in the first months of life. Biliary excretion is particularly important for substances with a molecular weight of > 500 g/mol and is of limited functionality during the first months of life. The amount of substrate that is eliminated by the liver and kidneys within a defined period of time is known as clearance and is strongly dependent on the substance and age of the child. Reciprocal to this is the elimination half-life, which has to be considered especially with repetitive administration. Only with sufficient experience with pharmacokinetic variations or comedications within the different age groups, a patient-adapted, individually correct dose application is possible. The knowledge of the age-specific pharmacokinetics together with the knowledge of patient-specific peculiarities and comedications allow an individual drug application characterized by heuristics.

Kernaussagen
  • Körperwasser- und Fettanteil, Plasmaeiweißbindung, Herzzeitvolumen, Atemminutenvolumen, Körperoberfläche, Nieren- und Leberfunktion sind wichtige Parameter, welche die Verstoffwechselung beeinflussen.

  • Insbesondere bei Früh- und Neugeborenen sind die Besonderheiten im Cytochrom-P450-Enzymsystem bei der Medikamentenauswahl und -dosierung zu beachten.

  • Vor allem Substanzen mit hoher renaler Clearance unterliegen nach der Geburt einer reduzierten Exkretion.

  • Die Eliminations-Halbwertszeit ist stark Substanz- und Altersabhängig und muss vor allem bei repetitiver Gabe beachtet werden.

  • Genaue Kenntnisse der altersspezifischen Pharmakokinetik zusammen mit dem Wissen um patientenspezifische Besonderheiten und Komedikationen ermöglichen eine durch die Heuristik geprägte individuelle Medikamentenapplikation.

 
  • Literatur

  • 1 Sury MR, Arumainathan R, Belhaj AM. et al. The state of UK pediatric anesthesia: a survey of National Health Service activity. Paediatr Anaesth 2015; 25: 1085-1092
  • 2 Batchelor HK, Marriott JF. Paediatric pharmacokinetics: key considerations. Br J Clin Pharmacol 2015; 79: 395-404
  • 3 Lu H, Rosenbaum S. Developmental pharmacokinetics in pediatric populations. J Pediatr Pharmacol Ther 2014; 19: 262-276
  • 4 Payne K, Mattheyse FJ, Liebenberg D. et al. The pharmacokinetics of midazolam in paediatric patients. Eur J Clin Pharmacol 1989; 37: 267-272
  • 5 Marshall J, Rodarte A, Blumer J. et al. Pediatric pharmacodynamics of midazolam oral syrup. Pediatric Pharmacology Research Unit Network. J Clin Pharmacol 2000; 40: 578-589
  • 6 de Martino M, Chiarugi A, Boner A. et al. Working Towards an Appropriate Use of Ibuprofen in Children: An Evidence-Based Appraisal. Drugs 2017; 77: 1295-1311
  • 7 Glare PA, Walsh TD. Clinical pharmacokinetics of morphine. Ther Drug Monit 1991; 13: 1-23
  • 8 Bouwmeester NJ, Anderson BJ, Tibboel D. et al. Developmental pharmacokinetics of morphine and its metabolites in neonates, infants and young children. Br J Anaesth 2004; 92: 208-217
  • 9 Gupta S, Gadani H, Kedia S. Is premedication with midazolam more effective by the sublingual than the oral route?. Anesth Essays Res 2011; 5: 43-47
  • 10 Arenas-Lopez S, Mulla H, Manna S. et al. Enteral absorption and haemodynamic response of clonidine in infants post-cardiac surgery. Br J Anaesth 2014; 113: 964-969
  • 11 Kearns GL, Abdel-Rahman SM, Alander SW. et al. Developmental pharmacology–drug disposition, action, and therapy in infants and children. N Engl J Med 2003; 349: 1157-1167
  • 12 Dubus JC, Vecellio L, De Monte M. et al. Aerosol deposition in neonatal ventilation. Pediatr Res 2005; 58: 10-14
  • 13 Fink JB. Aerosol delivery to ventilated infant and pediatric patients. Respir Care 2004; 49: 653-665
  • 14 Dikmen Y, Eminoglu E, Salihoglu Z. et al. Pulmonary mechanics during isoflurane, sevoflurane and desflurane anaesthesia. Anaesthesia 2003; 58: 745-748
  • 15 Lerman J. Inhalation agents in pediatric anaesthesia – an update. Curr Opin Anaesthesiol 2007; 20: 221-226
  • 16 Sarner JB, Levine M, Davis PJ. et al. Clinical characteristics of sevoflurane in children. A comparison with halothane. Anesthesiology 1995; 82: 38-46
  • 17 Costantino HR, Illum L, Brandt G. et al. Intranasal delivery: physicochemical and therapeutic aspects. Int J Pharm 2007; 337: 1-24
  • 18 Del Pizzo J, Callahan JM. Intranasal medications in pediatric emergency medicine. Pediatr Emerg Care 2014; 30: 496-501 quiz 2–4
  • 19 Inthavong K, Fung MC, Yang W. et al. Measurements of droplet size distribution and analysis of nasal spray atomization from different actuation pressure. J Aerosol Med Pulm Drug Deliv 2015; 28: 59-67
  • 20 Dahmani S, Michelet D, Abback PS. et al. Ketamine for perioperative pain management in children: a meta-analysis of published studies. Paediatr Anaesth 2011; 21: 636-652
  • 21 Fantacci C, Fabrizio GC, Ferrara P. et al. Intranasal drug administration for procedural sedation in children admitted to pediatric Emergency Room. Eur Rev Med Pharmacol Sci 2018; 22: 217-222
  • 22 Ziesenitz VC, Vaughns JD, Koch G. et al. Pharmacokinetics of Fentanyl and Its Derivatives in Children: A Comprehensive Review. Clin Pharmacokinet 2018; 57: 125-149
  • 23 Birmingham PK, Tobin MJ, Fisher DM. et al. Initial and subsequent dosing of rectal acetaminophen in children: a 24-hour pharmacokinetic study of new dose recommendations. Anesthesiology 2001; 94: 385-389
  • 24 Tetelbaum M, Finkelstein Y, Nava-Ocampo AA. et al. Back to basics: understanding drugs in children: pharmacokinetic maturation. Pediatr Rev 2005; 26: 321-328
  • 25 Greenblatt DJ, Koch-Weser J. Intramuscular injection of drugs. N Engl J Med 1976; 295: 542-546
  • 26 Green SM, Hummel CB, Wittlake WA. et al. What is the optimal dose of intramuscular ketamine for pediatric sedation?. Acad Emerg Med 1999; 6: 21-26
  • 27 Lin C, Durieux ME. Ketamine and kids: an update. Paediatr Anaesth 2005; 15: 91-97
  • 28 Rutter N. Percutaneous drug absorption in the newborn: hazards and uses. Clin Perinatol 1987; 14: 911-930
  • 29 Berde C. Regional anesthesia in children: what have we learned?. Anesth Analg 1996; 83: 897-900
  • 30 Lillieborg S, Otterbom I, Ahlen K. Topical anaesthesia in neonates, infants and children. Br J Anaesth 2004; 92: 450 author reply 450–451
  • 31 Taddio A, Ohlsson A, Einarson TR. et al. A systematic review of lidocaine-prilocaine cream (EMLA) in the treatment of acute pain in neonates. Pediatrics 1998; 101: E1
  • 32 Mazoit JX. Local anesthetics and their adjuncts. Paediatr Anaesth 2012; 22: 31-38
  • 33 Suresh S, Ecoffey C, Bosenberg A. et al. The European Society of Regional Anaesthesia and Pain Therapy/American Society of Regional Anesthesia and Pain Medicine Recommendations on Local Anesthetics and Adjuvants Dosage in Pediatric Regional Anesthesia. Reg Anesth Pain Med 2018; 43: 211-216
  • 34 Bosenberg AT, Thomas J, Cronje L. et al. Pharmacokinetics and efficacy of ropivacaine for continuous epidural infusion in neonates and infants. Paediatr Anaesth 2005; 15: 739-749
  • 35 Hansen TG, Ilett KF, Reid C. et al. Caudal ropivacaine in infants: population pharmacokinetics and plasma concentrations. Anesthesiology 2001; 94: 579-584
  • 36 Luz G, Wieser C, Innerhofer P. et al. Free and total bupivacaine plasma concentrations after continuous epidural anaesthesia in infants and children. Paediatr Anaesth 1998; 8: 473-478
  • 37 Bajwa SJ, Kaur J. Clinical profile of levobupivacaine in regional anesthesia: A systematic review. J Anaesthesiol Clin Pharmacol 2013; 29: 530-539
  • 38 Gunter JB. Benefit and Risks of Local Anesthetics in Infants and Children. Paediatr Drugs 2002; 4: 649-672
  • 39 Habre W, Bergesio R, Johnson C. et al. Pharmacokinetics of ropivacaine following caudal analgesia in children. Paediatr Anaesth 2000; 10: 143-147
  • 40 Oda Y. Pharmacokinetics and systemic toxicity of local anesthetics in children. J Anesthesia 2016; 30: 547-550
  • 41 Calder A, Bell GT, Andersson M. et al. Pharmacokinetic profiles of epidural bupivacaine and ropivacaine following single-shot and continuous epidural use in young infants. Paediatr Anaesth 2012; 22: 430-437
  • 42 Walker SM, Yaksh TL. Neuraxial analgesia in neonates and infants: a review of clinical and preclinical strategies for the development of safety and efficacy data. Anesth Analg 2012; 115: 638-662
  • 43 Lejus C, Schwoerer D, Furic I. et al. Fentanyl versus sufentanil: plasma concentrations during continuous epidural postoperative infusion in children. Br J Anaesth 2000; 85: 615-617
  • 44 Ingrande J, Lemmens HJ. Dose adjustment of anaesthetics in the morbidly obese. Br J Anaesth 2010; 105 (Suppl. 01) i16-i23
  • 45 Rowney DA, Doyle E. Epidural and subarachnoid blockade in children. Anaesthesia 1998; 53: 980-1001
  • 46 Anderson BJ, Meakin GH. Scaling for size: some implications for paediatric anaesthesia dosing. Paediatr Anaesth 2002; 12: 205-219
  • 47 Puig M. Body Composition and Growth. In: Walker WA, Watkins JB. eds. Nutrition in Paediatrics. Hamilton, Ontario, Canada: BC Decker Inc.; 1997: 44-62
  • 48 Hummler HD, Kirchheiner J, Seeringer A, Hübler A. Pharmakotherapie in der Neugeborenenzeit. In: Jorch G, Hübler A. Hrsg. Neonatologie. Stuttgart: Thieme; 2015
  • 49 Lerman J, Strong HA, LeDez KM. et al. Effects of age on the serum concentration of alpha 1-acid glycoprotein and the binding of lidocaine in pediatric patients. Clin Pharmacol Ther 1989; 46: 219-225
  • 50 Gaynor J, Ansermino JM. Paediatric total intravenous anaesthesia. BJA Educ 2016; 16: 369-373
  • 51 Chidambaran V, Costandi A, DʼMello A. Propofol: a review of its role in pediatric anesthesia and sedation. CNS Drugs 2015; 29: 543-563
  • 52 Driessen JJ, Robertson EN, Van Egmond J. et al. The time-course of action and recovery of rocuronium 0.3 mg x kg(− 1) in infants and children during halothane anaesthesia measured with acceleromyography. Paediatr Anaesth 2000; 10: 493-497
  • 53 Meretoja OA, Taivainen T, Erkola O. et al. Dose-response and time-course of effect of rocuronium bromide in paediatric patients. Eur J Anaesthesiol 1995; 11 (Suppl.) 19-22
  • 54 Wierda JM, Meretoja OA, Taivainen T. et al. Pharmacokinetics and pharmacokinetic-dynamic modelling of rocuronium in infants and children. Br J Anaesth 1997; 78: 690-695
  • 55 Carasco CF, Fletcher P, Maconochie I. Review of commonly used age-based weight estimates for paediatric drug dosing in relation to the pharmacokinetic properties of resuscitation drugs. Br J Clin Pharmacol 2016; 81: 849-856
  • 56 Anderson BJ, Holford NH. What is the best size predictor for dose in the obese child?. Paediatr Anaesth 2017; 27: 1176-1184
  • 57 Collier H, Nasim M, Gandhi A. Prescribing in obese children: how good are paediatricians?. Arch Dis Child 2017; 102: 61-62
  • 58 Kendrick JG, Carr RR, Ensom MH. Pharmacokinetics and drug dosing in obese children. J Pediatr Pharmacol Ther 2010; 15: 94-109
  • 59 Harskamp-van Ginkel MW, Hill KD, Becker KC. et al. Drug Dosing and Pharmacokinetics in Children With Obesity: A Systematic Review. JAMA Pediatr 2015; 169: 678-685
  • 60 Blake MJ, Castro L, Leeder JS. et al. Ontogeny of drug metabolizing enzymes in the neonate. Semin Fetal Neonatal Med 2005; 10: 123-138
  • 61 Johnsrud EK, Koukouritaki SB, Divakaran K. et al. Human hepatic CYP2E1 expression during development. J Pharmacol Exp Ther 2003; 307: 402-407
  • 62 Choonara I, Lawrence A, Michalkiewicz A. et al. Morphine metabolism in neonates and infants. Br J Clin Pharmacol 1992; 34: 434-437
  • 63 Burtin P, Jacqz-Aigrain E, Girard P. et al. Population pharmacokinetics of midazolam in neonates. Clin Pharmacol Ther 1994; 56 (6 Pt 1): 615-625
  • 64 Woelfel SK, Brandom BW, McGowan jr. FX. et al. Clinical pharmacology of mivacurium in pediatric patients less than off years old during nitrous oxide-halothane anesthesia. Anesth Analg 1993; 77: 713-720
  • 65 Goudsouzian N. Mivacurium in infants and children. Paediatr Anaesth 1997; 7: 183-190
  • 66 Cook DR, Gronert BJ, Woelfel SK. Comparison of the neuromuscular effects of mivacurium and suxamethonium in infants and children. Acta Anaesthesiol Scand Suppl 1995; 106: 35-40
  • 67 Ross AK, Davis PJ, Dear Gd GL. et al. Pharmacokinetics of remifentanil in anesthetized pediatric patients undergoing elective surgery or diagnostic procedures. Anesth Analg 2001; 93: 1393-1401 table of contents
  • 68 Tobias JD. A prospective evaluation of the continuous infusion of cis-atracurium for neuromuscular blockade in the pediatric intensive care unit patient: efficacy and dosage requirements. Am J Ther 1997; 4: 287-290
  • 69 Odetola FO, Bhatt-Mehta V, Zahraa J. et al. Cisatracurium infusion for neuromuscular blockade in the pediatric intensive care unit: A dose-finding study. Pediatr Crit Care Med 2002; 3: 250-254
  • 70 Rhodin MM, Anderson BJ, Peters AM. et al. Human renal function maturation: a quantitative description using weight and postmenstrual age. Pediatr Nephrol 2009; 24: 67-76
  • 71 Goa KL, Noble S, Spencer CM. Sevoflurane in paediatric anaesthesia: a review. Paediatr Drugs 1999; 1: 127-153
  • 72 Anderson BJ. Pharmacology in the very young: anaesthetic implications. Eur J Anaesthesiol 2012; 29: 261-270
  • 73 Booker P. Intravenous Agents. In: Sumner E, Hatch DJ. Paediatric Anaesthesia. 2nd ed.. London: Arnold; 2000: 131
  • 74 Allegaert K, de Hoon J, Verbesselt R. et al. Maturational pharmacokinetics of single intravenous bolus of propofol. Paediatr Anaesth 2007; 17: 1028-1034