Int J Sports Med 2019; 40(07): 434-439
DOI: 10.1055/a-0856-7207
Physiology & Biochemistry
© Georg Thieme Verlag KG Stuttgart · New York

Trunk Muscle Aerobic Metabolism Responses in Endurance Athletes, Combat Athletes and Untrained Men

Agathe Anthierens
1   Univ. Lille, Univ. Artois, Univ. Littoral Côte d’Opale, EA 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Lille, France
,
Nicolas Olivier
1   Univ. Lille, Univ. Artois, Univ. Littoral Côte d’Opale, EA 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Lille, France
,
André Thevenon
1   Univ. Lille, Univ. Artois, Univ. Littoral Côte d’Opale, EA 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Lille, France
2   CHRU Lille, Service de Médecine Physique et de Réadaptation fonctionnelle, Lille, France
,
Patrick Mucci
1   Univ. Lille, Univ. Artois, Univ. Littoral Côte d’Opale, EA 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Lille, France
› Institutsangaben
Weitere Informationen

Publikationsverlauf



accepted 07. Februar 2019

Publikationsdatum:
12. Juni 2019 (online)

Preview

Abstract

This study investigated aerobic metabolism responses in trunk muscles during a prolonged trunk extension exercise in athletes and untrained young men. The aim was to analyze the adaptations induced by 2 types of sports: one involving intensive use of trunk muscles (i. e., judo), and one known to induce high aerobic capacity in the whole body (i. e., cycling). Eleven judokas, 10 cyclists and 9 healthy untrained young men performed trunk extension exercises on an isokinetic dynamometer. During the first session, muscle strength was assessed during maximal trunk extension. During a second session, a 5-min exercise was performed to investigate aerobic responses with regard to trunk muscles. The near infrared spectroscopy technique and a gas exchange analyzer were used continuously to evaluate mechanical efficiency, V̇O2 on-set kinetics, trunk muscle deoxygenation and blood volume. Judokas showed greater trunk strength and mechanical efficiency (p<0.05). Cyclists presented faster V̇O2 on-set kinetics (p<0.05) and greater muscle deoxygenation and blood volume compared to untrained men (p<0.001). These results suggest that practicing judo improves trunk extension efficiency whereas cycling accelerates aerobic pathways and enhances microvascular responses to trunk extension exercise. Sport practice improves aerobic metabolism responses in trunk extensor muscles differently, according to the training specificities.