RSS-Feed abonnieren
DOI: 10.1055/a-0861-8025
Therapeutisches Potenzial der nicht kodierenden RNAs für die akute und chronische Myokardischämie
Therapeutic Potential of Non-Coding RNAs for Acute and Chronic Myocardial IschemiaPublikationsverlauf
Publikationsdatum:
17. Juni 2019 (online)
Zusammenfassung
Ein Myokardinfarkt führt unter anderem zum Zelltod von Kardiomyozyten, dem eine mit Fibrose und Remodeling der Ventrikel verbundene Verletzungsreaktion des Herzens folgt. Nicht kodierende RNAs, insbesondere microRNAs, zeigen nach einem Infarkt bekanntlich verschiedene Aktivitäten im Herzen und steuern Verletzungsreaktionen und die Reparatur, indem sie den Tod der Kardiomyozyten, das Gefäßwachstum und die Herzfibrose beeinflussen. Zusätzlich können mehrere microRNAs moduliert werden, um die Herzregeneration zu beeinflussen. Derzeit werden in ersten Phase-I-Studien spezifische microRNA-Inhibitoren für ausgewählte microRNAs, sogenannte antimiRs, zur therapeutischen Anwendung am Menschen getestet. Neuere Studien weisen außerdem darauf hin, dass auch die weniger gut untersuchten langen nicht kodierenden RNAs gezielt beeinflusst werden können, um die Herzfunktion nach Infarkt zu verbessern. Der vorliegende Artikel fasst neuartige Ansätze zusammen, die auf nicht kodierende RNAs als therapeutische Option zur Förderung der Herzreparatur und -regeneration abzielen.
Abstract
Myocardial infarction leads to an initial cell death of cardiomyocytes that is followed by injury response associated with fibrosis and remodeling of the ventricle. Non coding RNAs, particularly microRNAs, are well known to exhibit various activities in the heart after injury and control the injury responses and repair by affecting cardiomyocyte death, vascular growth, and cardiac fibrosis. In addition, several microRNAs may be modulated to affect cardiac regeneration. MicroRNA inhibitors directed against specific microRNAs, so called antimiRs, are currently tested in first human Phase I studies. In addition, recent studies suggest that long non coding RNAs, although less well studied, might be targetable for improving cardiac function. The current article summarizes novel approaches targeting non coding RNAs as therapeutic option to promote cardiac repair and regeneration.
Nicht kodierende RNAs haben wesentliche Funktionen im Herz. Präklinische Studien zeigen, dass die gezielte Beeinflussung von kleinen, nicht kodierenden RNAs, genannt microRNAs, eine neue Therapieoption zur Behandlung von Herzinfarkt oder Herzmuskelschwäche darstellt. Aktuell werden solche Ansätze in ersten klinischen Studien getestet.
-
Literatur
- 1 Djebali S, Davis CA, Merkel A. et al. Landscape of transcription in human cells. Nature 2012; 489: 101-108 doi:10.1038/nature11233
- 2 Derrien T, Johnson R, Bussotti G. et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 2012; 22: 1775-1789 doi:10.1101/gr.132159.111
- 3 Griffiths-Jones S, Grocock RJ, van Dongen S. et al. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 2006; 34: D140-D144 doi:10.1093/nar/gkj112
- 4 Fang S, Zhang L, Guo J. et al. NONCODEV5: a comprehensive annotation database for long non-coding RNAs. Nucleic Acids Res 2018; 46 (D1): D308-D314 doi:10.1093/nar/gkx1107
- 5 Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell 2009; 136: 215-233 doi:10.1016/j.cell.2009.01.002
- 6 Carrington JC, Ambros V. Role of microRNAs in plant and animal development. Science 2003; 301: 336-338 doi:10.1126/science.1085242
- 7 Boon RA, Jaé N, Holdt L. et al. Long Noncoding RNAs: From Clinical Genetics to Therapeutic Targets?. J Am Coll Cardiol 2016; 67: 1214-1226 doi:10.1016/j.jacc.2015.12.051
- 8 Lucas T, Bonauer A, Dimmeler S. RNA Therapeutics in Cardiovascular Disease. Circ Res 2018; 123: 205-220 doi:10.1161/CIRCRESAHA.117.311311
- 9 Fiedler J, Thum T. MicroRNAs in myocardial infarction. Arterioscler Thromb Vasc Biol 2013; 33: 201-205 doi:10.1161/ATVBAHA.112.300137
- 10 Boon RA, Dimmeler S. MicroRNAs in myocardial infarction. Nat Rev Cardiol 2015; 12: 135-142 doi:10.1038/nrcardio.2014.207
- 11 Olson EN. MicroRNAs as therapeutic targets and biomarkers of cardiovascular disease. Sci Transl Med 2014; 6: 239ps3 doi:10.1126/scitranslmed.3009008
- 12 Daniel JM, Penzkofer D, Teske R. et al. Inhibition of miR-92a improves re- endothelialization and prevents neointima formation following vascular injury. Cardiovasc Res 2014; 103: 564-572 doi:10.1093/cvr/cvu162
- 13 Bonauer A, Carmona G, Iwasaki M. et al. MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science 2009; 324: 1710-1713 doi:10.1126/science.1174381
- 14 Lucas T, Schäfer F, Müller P. et al. Light-inducible antimiR-92a as a therapeutic strategy to promote skin repair in healing-impaired diabetic mice. Nat Commun 2017; 8: 15162 doi:10.1038/ncomms15162
- 15 Loyer X, Potteaux S, Vion AC. et al. Inhibition of microRNA-92a prevents endothelial dysfunction and atherosclerosis in mice. Circ Res 2014; 114: 434-443 doi:10.1161/CIRCRESAHA.114.302213
- 16 Hinkel R, Penzkofer D, Zühlke S. et al. Inhibition of microRNA-92a protects against ischemia/reperfusion injury in a large-animal model. Circulation 2013; 128: 1066-1075 doi:10.1161/CIRCULATIONAHA.113.001904
- 17 Rogg EM, Abplanalp WT, Bischof C. et al. Analysis of Cell Type-Specific Effects of MicroRNA-92a Provides Novel Insights Into Target Regulation and Mechanism of Action. Circulation 2018; 138: 2545-2558 doi:10.1161/CIRCULATIONAHA.118.034598
- 18 Prabhu SD, Frangogiannis NG. The Biological Basis for Cardiac Repair After Myocardial Infarction: From Inflammation to Fibrosis. Circ Res 2016; 119: 91-112 doi:10.1161/CIRCRESAHA.116.303577
- 19 Thum T, Gross C, Fiedler J. et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature 2008; 456: 980-984 doi:10.1038/nature07511
- 20 Thum T, Gross C, Fiedler J. et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature 2008; 456: 980-984 doi:10.1038/nature07511
- 21 Gupta SK, Itagaki R, Zheng X. et al. miR-21 promotes fibrosis in an acute cardiac allograft transplantation model. Cardiovasc Res 2016; 110: 215-226 doi:10.1093/cvr/cvw030
- 22 Kumarswamy R, Volkmann I, Thum T. Regulation and function of miRNA-21 in health and disease. RNA Biol 2011; 8: 706-713 doi:10.4161/rna.8.5.16154
- 23 Hullinger TG, Montgomery RL, Seto AG. et al. Inhibition of miR-15 protects against cardiac ischemic injury. Circ Res 2012; 110: 71-81 doi:10.1161/CIRCRESAHA.111.244442
- 24 Porrello ER, Johnson BA, Aurora AB. et al. miR-15 Family Regulates Postnatal Mitotic Arrest of Cardiomyocytes. Circ Res 2011; 109: 670-679 doi:10.1161/CIRCRESAHA.111.248880
- 25 Zhu H, Yang Y, Wang Y. et al. MicroRNA-195 promotes palmitate-induced apoptosis in cardiomyocytes by down-regulating Sirt1. Cardiovasc Res 2011; 92: 75-84 doi:10.1093/cvr/cvr145
- 26 Nishi H, Ono K, Iwanaga Y. et al. MicroRNA-15b modulates cellular ATP levels and degenerates mitochondria via Arl2 in neonatal rat cardiac myocytes. J Biol Chem 2010; 285: 4920-4930 doi:10.1074/jbc.M109.082610
- 27 Hermeking H. The miR-34 family in cancer and apoptosis. Cell Death Differ 2010; 17: 193-199 doi:10.1038/cdd.2009.56
- 28 Boon RA, Iekushi K, Lechner S. et al. MicroRNA-34a regulates cardiac ageing and function. Nature 2013; 495: 107-110 doi:10.1038/nature11919
- 29 Bernardo BC, Gao XM, Winbanks CE. et al. Therapeutic inhibition of the miR-34 family attenuates pathological cardiac remodeling and improves heart function. Proc Natl Acad Sci U S A 2012; 109: 17615-17620 doi:10.1073/pnas.1206432109
- 30 Bernardo BC, Gao XM, Tham YK. et al. Silencing of miR-34a Attenuates Cardiac Dysfunction in a Setting of Moderate, but Not Severe, Hypertrophic Cardiomyopathy. PLoS One 2014; 9: e90337 doi:10.1371/journal.pone.0090337
- 31 Yamakuchi M, Ferlito M, Lowenstein CJ. miR-34a repression of SIRT1 regulates apoptosis. Proc Natl Acad Sci U S A 2008; 105: 13421-13426 doi:10.1073/pnas.0801613105
- 32 Yuan X, Braun T. Multimodal Regulation of Cardiac Myocyte Proliferation. Circ Res 2017; 121: 293-309 doi:10.1161/CIRCRESAHA.117.308428
- 33 Porrello ER, Mahmoud AI, Simpson E. et al. Transient regenerative potential of the neonatal mouse heart. Science 2011; 331: 1078-1080 doi:10.1126/science.1200708
- 34 Yang Y, Cheng HW, Qiu Y. et al. MicroRNA-34a Plays a Key Role in Cardiac Repair and Regeneration Following Myocardial Infarction. Circ Res 2015; 117: 450-459 doi:10.1161/CIRCRESAHA.117.305962
- 35 Kipps TJ, Stevenson FK, Wu CJ. et al. Chronic lymphocytic leukaemia. Nat Rev Dis Primers 2017; 3: 16096
- 36 Eulalio A, Mano M, Dal Ferro M. et al. Functional screening identifies miRNAs inducing cardiac regeneration. Nature 2012; 492: 376-381 doi:10.1038/nature11739
- 37 Lesizza P, Prosdocimo G, Martinelli V. et al. Single-Dose Intracardiac Injection of Pro-Regenerative MicroRNAs Improves Cardiac Function After Myocardial Infarction. Circ Res 2017; 120: 1298-1304 doi:10.1161/CIRCRESAHA.116.309589
- 38 Boon RA, Jaé N, Holdt L. et al. Long Noncoding RNAs: From Clinical Genetics to Therapeutic Targets?. J Am Coll Cardiol 2016; 67: 1214-1226 doi:10.1016/j.jacc.2015.12.051
- 39 Viereck J, Thum T. Long Noncoding RNAs in Pathological Cardiac Remodeling. Circ Res 2017; 120: 262-264 doi:10.1161/CIRCRESAHA.116.310174
- 40 Kumar MM, Goyal R. LncRNA as a Therapeutic Target for Angiogenesis. Curr Top Med Chem 2017; 17: 1750-1757 doi:10.2174/1568026617666161116144744
- 41 Michalik KM, You X, Manavski Y. et al. Long Noncoding RNA MALAT1 Regulates Endothelial Cell Function and Vessel Growth. Circ Res 2014; 114: 1389-1397 doi:10.1161/CIRCRESAHA.114.303265
- 42 Guo X, Wu X, Han Y. et al. LncRNA MALAT1 protects cardiomyocytes from isoproterenol-induced apoptosis through sponging miR-558 to enhance ULK1-mediated protective autophagy. J Cell Physiol 2018; 234: 10842-10854 doi:10.1002/jcp.27925
- 43 Boon RA, Hofmann P, Michalik KM. et al. Long Noncoding RNA Meg3 Controls Endothelial Cell Aging and Function. J Am Coll Cardiol 2016; 68: 2589-2591 doi:10.1016/j.jacc.2016.09.949
- 44 Piccoli MT, Gupta SK, Viereck J. et al. Inhibition of the Cardiac Fibroblast-Enriched lncRNA Meg3 Prevents Cardiac Fibrosis and Diastolic Dysfunction. Circ Res 2017; 121: 575-583 doi:10.1161/CIRCRESAHA.117.310624
- 45 Wu H, Zhao ZA, Liu J. et al. Long noncoding RNA Meg3 regulates cardiomyocyte apoptosis in myocardial infarction. Gene Ther 2018; 25: 511-523 doi:10.1038/s41434-018-0045-4
- 46 Ishii N, Ozaki K, Sato H. et al. Identification of a novel non-coding RNA, MIAT, that confers risk of myocardial infarction. J Hum Genet 2006; 51: 1087-1099 doi:10.1007/s10038-006-0070-9
- 47 Qu X, Du Y, Shu Y. et al. MIAT Is a Pro-fibrotic Long Non-coding RNA Governing Cardiac Fibrosis in Post-infarct Myocardium. Sci Rep 2017; 7: 42657 doi:10.1038/srep42657
- 48 Zhu XH, Yuan YX, Rao SL. et al. LncRNA MIAT enhances cardiac hypertrophy partly through sponging miR-150. Eur Rev Med Pharmacol Sci 2016; 20: 3653-3660
- 49 Viereck J, Kumarswamy R, Foinquinos A. et al. Long noncoding RNA Chast promotes cardiac remodeling. Sci Transl Med 2016; 8: 326ra22 doi:10.1126/scitranslmed.aaf1475
- 50 van Rooij E, Kauppinen S. Development of microRNA therapeutics is coming of age. EMBO Mol Med 2014; 6: 851-864 doi:10.15252/emmm.201100899