Subscribe to RSS
DOI: 10.1055/a-0864-2084
Bildgebende Diagnostik des Multiplen Myeloms
Article in several languages: English | deutschPublication History
21 November 2018
06 February 2019
Publication Date:
11 June 2019 (online)
Zusammenfassung
Hintergrund Das Multiple Myelom ist eine maligne hämatologische Erkrankung, die sich durch die Proliferation von monoklonalen Plasmazellen vor allem im Knochenmark auszeichnet. Die Bildgebung spielt zur Diagnosestellung und Verlaufsbeurteilung eine wichtige Rolle.
Methode Dieser Übersichtsartikel informiert über das Krankheitsbild des Multiplen Myeloms samt Vorstufen und beschreibt die zur Verfügung stehenden bildgebenden Untersuchungstechniken. Diese werden samt Vor- und Nachteilen sowie möglichen prognostischen und therapeutischen Implikationen vor dem Hintergrund der aktuellen Literatur vorgestellt.
Ergebnisse und Schlussfolgerung Der konventionelle Röntgenstatus ist beim Multiple Myelom mittlerweile vollständig von Schnittbildtechniken ersetzt worden. Die breit verfügbare Ganzkörper-Computertomografie wird routinemäßig verwendet, um Osteolysen nachzuweisen. Die Magnetresonanztomografie hat die höchste Sensitivität zur Detektion von Knochenmarkbefall und wird insbesondere bei den Vorstufen des symptomatischen Multiplen Myeloms empfohlen. Die Positronen-Emissionstomografie vereint morphologische und funktionelle Bildgebung. Sie kommt vor allem bei der Verlaufsbeurteilung und Evaluation von Therapieansprechen zum Einsatz.
Kernaussagen:
-
Der konventionelle Röntgenstatus („Pariser Schema“) ist obsolet.
-
Die Detektion von Osteolysen geschieht mittels Ganzkörper-CT.
-
Die MRT hat die höchste Sensitivität zur Detektion von Knochenmarkbefall.
-
Bei Myelom-Vorstufen kommt die MRT (alternativ: PET/CT) zum Einsatz.
-
Die PET/CT wird zur Verlaufsbeurteilung und Therapieevaluation angewandt.
Zitierweise
-
Kosmala A, Bley T, Petritsch B. Imaging of Multiple Myeloma. Fortschr Röntgenstr 2019; 191: 805 – 816
-
References
- 1 Krebs in Deutschland für 2013/2014. Robert Koch-Institut; 2017 11th ed.
- 2 Kyle RA, Gertz MA, Witzig TE. et al. Review of 1027 patients with newly diagnosed multiple myeloma. Mayo Clin Proc 2003; 78: 21-33
- 3 Rajkumar SV, Kumar S. Multiple Myeloma: Diagnosis and Treatment. Mayo Clin Proc 2016; 91: 101-119
- 4 Rajkumar SV, Dimopoulos MA, Palumbo A. et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol 2014; 15: e538-e548
- 5 Terpos E, Dimopoulos MA, Moulopoulos LA. The Role of Imaging in the Treatment of Patients With Multiple Myeloma in 2016. Am Soc Clin Oncol Educ B 2016; 36: e407-e417
- 6 Mihailovic J, Goldsmith SJ. Multiple myeloma:18F-FDG-PET/CT and diagnostic imaging. In: Semin Nucl Med. W.B. Saunders 2015: 16-31
- 7 Hillengass J, Merz M, Delorme S. Minimal residual disease in multiple myeloma: use of magnetic resonance imaging. Semin Hematol 2018; 55: 19-21
- 8 Durie BGM, Salmon SE. A clinical staging system for multiple myeloma. Cancer 1975; 36: 842-854
- 9 Dimopoulos M, Terpos E, Comenzo RL. et al. International myeloma working group consensus statement and guidelines regarding the current role of imaging techniques in the diagnosis and monitoring of multiple Myeloma. Leukemia 2009; 23: 1545-1556
- 10 Moreau P, San Miguel J, Sonneveld P. et al. Multiple myeloma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2017; 28: iv52-iv61
- 11 Terpos E, Kleber M, Engelhardt M. et al. European myeloma network guidelines for the management of multiple myeloma-related complications. Haematologica 2015; 100: 1254-1266
- 12 Regelink JC, Minnema MC, Terpos E. et al. Comparison of modern and conventional imaging techniques in establishing multiple myeloma-related bone disease: A systematic review. Br J Haematol 2013; 162: 50-61
- 13 Cretti F, Perugini G. Patient dose evaluation for the whole-body low-dose multidetector CT (WBLDMDCT) skeleton study in multiple myeloma (MM). Radiol Medica 2016; 121: 93-105
- 14 Gleeson TG, Moriarty J, Shortt CP. et al. Accuracy of whole-body low-dose multidetector CT (WBLDCT) versus skeletal survey in the detection of myelomatous lesions, and correlation of disease distribution with whole-body MRI (WBMRI). Skeletal Radiol 2009; 38: 225-236
- 15 Hansford BG, Silbermann R. Advanced Imaging of Multiple Myeloma Bone Disease. Front Endocrinol (Lausanne) 2018; 9: 436
- 16 Suntharalingam S, Mikat C, Wetter A. et al. Whole-body ultra-low dose CT using spectral shaping for detection of osteolytic lesion in multiple myeloma. Eur Radiol 2018; 28: 1-8
- 17 Surov A, Bach AG, Tcherkes A. et al. Non-osseous incidental findings in low-dose whole-body CT in patients with multiple myeloma. Br J Radiol 2014; 87: 20140185
- 18 Matsue K, Kobayashi H, Matsue Y. et al. Prognostic significance of bone marrow abnormalities in the appendicular skeleton of patients with multiple myeloma. Blood Adv 2018; 2: 1032-1039
- 19 Horger M, Kanz L, Denecke B. et al. The benefit of using whole-body, low-close, nonenhanced, multidetector computed tomography for follow-up and therapy response monitoring in patients with multiple myeloma. Cancer 2007; 109: 1617-1626
- 20 Dimopoulos MA, Hillengass J, Usmani S. et al. Role of magnetic resonance imaging in the management of patients with multiple myeloma: a consensus statement. J Clin Oncol 2015; 33: 657-664
- 21 Bäuerle T, Hillengass J, Fechtner K. et al. Multiple Myeloma and Monoclonal Gammopathy of Undetermined Significance: Importance of Whole-Body versus Spinal MR Imaging. Radiology 2009; 252: 477-485
- 22 Mai EK, Hielscher T, Kloth JK. et al. A magnetic resonance imaging-based prognostic scoring system to predict outcome in transplant-eligible patients with multiple myeloma. Haematologica 2015; 100: 818-825
- 23 Hillengass J, Weber MA, Kilk K. et al. Prognostic significance of whole-body MRI in patients with monoclonal gammopathy of undetermined significance. Leukemia 2014; 28: 174-178
- 24 Spinnato P, Bazzocchi A, Brioli A. et al. Contrast enhanced MRI and18F-FDG PET-CT in the assessment of multiple myeloma: A comparison of results in different phases of the disease. Eur J Radiol 2012; 81: 4013-4018
- 25 Zamagni E, Nanni C, Patriarca F. et al. A prospective comparison of 18F-fluorodeoxyglucose positron emission tomography-computed tomography, magnetic resonance imaging and whole-body planar radiographs in the assessment of bone disease in newly diagnosed multiple myeloma. Haematologica 2007; 92: 50-55
- 26 Breyer RJ, Mulligan ME, Smith SE. et al. Comparison of imaging with FDG PET/CT with other imaging modalities in myeloma. Skeletal Radiol 2006; 35: 632-640
- 27 Baur A, Stäbler A, Brüning R. et al. Diffusion-weighted MR imaging of bone marrow: differentiation of benign versus pathologic compression fractures. Radiology 1998; 207: 349-356
- 28 Varettoni M, Corso A, Pica G. et al. Incidence, presenting features and outcome of extramedullary disease in multiple myeloma: A longitudinal study on 1003 consecutive patients. Ann Oncol 2010; 21: 325-330
- 29 Walker R, Barlogie B, Haessler J. et al. Magnetic Resonance Imaging in Multiple Myeloma: Diagnostic and Clinical Implications. J Clin Oncol 2007; 25: 1121-1128
- 30 Nanni C, Zamagni E, Farsad M. et al. Role of 18F-FDG PET/CT in the assessment of bone involvement in newly diagnosed multiple myeloma: preliminary results. Eur J Nucl Med Mol Imaging 2006; 33: 525-531
- 31 Kumar S, Paiva B, Anderson KC. et al. International Myeloma Working Group consensus criteria for response and minimal residual disease assessment in multiple myeloma. Lancet Oncol 2016; 17: e328-e346
- 32 Derlin T, Peldschus K, Münster S. et al. Comparative diagnostic performance of18F-FDG PET/CT versus whole-body MRI for determination of remission status in multiple myeloma after stem cell transplantation. Eur Radiol 2013; 23: 570-578
- 33 Bartel TB, Haessler J, Brown TLY. et al. F18-fluorodeoxyglucose positron emission tomography in the context of other imaging techniques and prognostic factors in multiple myeloma. Blood 2009; 114: 2068-2076
- 34 Usmani SZ, Mitchell A, Waheed S. et al. Prognostic implications of serial 18-fluoro-deoxyglucose emission tomography in multiple myeloma treated with total therapy 3. Blood 2013; 121: 1819-1823
- 35 Zamagni E, Patriarca F, Nanni C. et al. Prognostic relevance of 18-F FDG PET/CT in newly diagnosed multiple myeloma patients treated with up-front autologous transplantation. Blood 2011; 118: 5989-5995
- 36 Nanni C, Zamagni E, Celli M. et al. The value of 18F-FDG PET/CT after autologous stem cell transplantation (ASCT) in patients affected by multiple myeloma (MM): Experience with 77 patients. Clin Nucl Med 2013; 38: e74-e79
- 37 Lapa C, Lückerath K, Malzahn U. et al. 18 FDG-PET/CT for prognostic stratification of patients with multiple myeloma relapse after stem cell transplantation. Oncotarget 2014; 5: 7381-7391
- 38 Hillengass J, Fechtner K, Weber MA. et al. Prognostic significance of focal lesions in whole-body magnetic resonance imaging in patients with asymptomatic multiple myeloma. J Clin Oncol 2010; 28: 1606-1610
- 39 Kastritis E, Moulopoulos LA, Terpos E. et al. The prognostic importance of the presence of more than one focal lesion in spine MRI of patients with asymptomatic (smoldering) multiple myeloma. Leukemia 2014; 28: 2402-2403
- 40 Moulopoulos LA, Dimopoulos MA, Weber D. et al. Magnetic resonance imaging in the staging of solitary plasmacytoma of bone. J Clin Oncol 1993; 11: 1311-1315
- 41 Rasche L, Chavan SS, Stephens OW. et al. Spatial genomic heterogeneity in multiple myeloma revealed by multi-region sequencing. Nat Commun 2017; 8: 268
- 42 Zamagni E, Nanni C, Mancuso K. et al. PET/CT improves the definition of complete response and allows to detect otherwise unidentifiable skeletal progression in multiple myeloma. Clin Cancer Res 2015; 21: 4384-4390
- 43 Hillengass J, Ritsch J, Merz M. et al. Prognostic Significance Of Parameters Of Dynamic Contrast-Enhanced MRI Detecting Increased Bone Marrow Microcirculation In Monoclonal Plasma Cell Disorders. Blood 2013; 122: 3146
- 44 Dutoit JC, Claus E, Offner F. et al. Combined evaluation of conventional MRI, dynamic contrast-enhanced MRI and diffusion weighted imaging for response evaluation of patients with multiple myeloma. Eur J Radiol 2016; 85: 373-382
- 45 Pawlyn C, Fowkes L, Otero S. et al. Whole-body diffusion-weighted MRI: A new gold standard for assessing disease burden in patients with multiple myeloma?. Leukemia 2016; 30: 1446-1448
- 46 Sachpekidis C, Mosebach J, Freitag MT. et al. Application of 18 F-FDG PET and diffusion weighted imaging (DWI) in multiple myeloma: comparison of functional imaging modalities. Am J Nucl Med Mol Imaging 2015; 5: 479-492
- 47 Horger M, Weisel K, Horger W. et al. Whole-body diffusion-weighted MRI with apparent diffusion coefficient mapping for early response monitoring in multiple myeloma: preliminary results. Am J Roentgenol 2011; 196: W790-W795
- 48 Giles SL, Messiou C, Collins DJ. et al. Whole-Body Diffusion-weighted MR Imaging for Assessment of Treatment Response in Myeloma. Radiology 2014; 271: 785-794
- 49 Hillengass J, Bäuerle T, Bartl R. et al. Diffusion-weighted imaging for non-invasive and quantitative monitoring of bone marrow infiltration in patients with monoclonal plasma cell disease: A comparative study with histology. Br J Haematol 2011; 153: 721-728
- 50 Sachpekidis C, Hillengass J, Goldschmidt H. et al. Comparison of (18)F-FDG PET/CT and PET/MRI in patients with multiple myeloma. Am J Nucl Med Mol Imaging 2015; 5: 469-478
- 51 Lapa C, Knop S, Schreder M. et al. 11C-methionine-PET in multiple myeloma: Correlation with clinical parameters and bone marrow involvement. Theranostics 2016; 6: 254-261
- 52 Luckerath K, Lapa C, Albert C. et al. 11C-Methionine-PET: a novel and sensitive tool for monitoring of early response to treatment in multiple myeloma. Oncotarget 2015; 6: 8418-8429
- 53 Kosmala A, Weng AM, Heidemeier A. et al. Multiple Myeloma and Dual-Energy CT: Diagnostic Accuracy of Virtual Noncalcium Technique for Detection of Bone Marrow Infiltration of the Spine and Pelvis. Radiology 2018; 286: 205-213
- 54 Kosmala A, Weng AM, Krauss B. et al. Dual-energy CT of the bone marrow in multiple myeloma: diagnostic accuracy for quantitative differentiation of infiltration patterns. Eur Radiol 2018; 28: 5083-5090
- 55 Burke MC, Garg A, Youngner JM. et al. Initial experience with dual-energy computed tomography-guided bone biopsies of bone lesions that are occult on monoenergetic CT. Skeletal Radiol 2018; 48: 605-613