Subscribe to RSS
DOI: 10.1055/a-0864-4793
Perioperative/postoperative antientzündliche Therapie bei/nach Hornhautchirurgie/Hornhauttransplantation
Perioperative/Postoperative Anti-Inflammatory Therapy During/After Corneal Surgery/TransplantationPublication History
eingereicht 27 February 2019
akzeptiert 01 March 2019
Publication Date:
16 May 2019 (online)
Zusammenfassung
Nach Hornhautchirurgie kommt es durch das mechanische Trauma, durch Fremdkörper wie z. B. Nähte oder Implantate oder durch Antigene bei Gewebetransplantation zu entzündlichen Reaktionen. Nach chirurgischen Eingriffen mit Abstand zum vaskularisierten Limbus verlaufen diese aufgrund des Immunprivilegs und des angiogenen Privilegs der Hornhaut in aller Regel sehr gedämpft. Hauptpfeiler in der Therapie und Prophylaxe von Entzündungen nach Hornhautchirurgie sind topische Glukokortikoide. Bei der Anwendung müssen die kataraktogene Wirkung bei Langzeitnutzung, die Möglichkeit einer steroidbedingten Augeninnendruckerhöhung als sogenannte Steroidresponse, die Erhöhung der Infektanfälligkeit und die Hemmung einer Epithelialisierung berücksichtigt werden. Die verfügbaren Glukokortikoide unterscheiden sich in ihrer Fähigkeit zur Penetration in das Auge (Prednisolon am besten), ihrer immunsuppressiven Wirkung (Dexamethason am besten) und im Risiko der Induktion einer Steroidresponse (Loteprednoletabonat und Fluorometholon am geringsten). Die unterschiedlichen Eigenschaften müssen bei der Wahl des „richtigen“ Glukokortikoids berücksichtigt werden: Bei Gefahr einer Epithelialisierungsstörung sollten topische Steroide möglichst vermieden bzw., falls zwingend erforderlich, konservierungsmittelfreies und phosphatfreies Dexamethason (Dexapos COMOD®) verwendet werden. Bei Bedarf einer Tiefenwirksamkeit, z. B. nach perforierender Keratoplastik, sollte Prednisolonacetat verwendet werden. Bei bekannter Steroidresponse sollten Loteprednoletabonat oder Fluorometholon verwendet werden. Wenn allogenes Gewebe transplantiert wird, ist eine langfristige topische Anwendung von Glukokortikoiden über 24 Monate und länger notwendig. Nach Hochrisikokeratoplastik mit allogenem Spendergewebe ist meist eine ergänzende systemische immunsuppressive Therapie mit Calcineurininhibitoren oder Mycophenolatmofetil über 6 – 12 Monate sinnvoll.
Abstract
Surgical trauma, and foreign material – such as sutures or implants or antigens during tissue transplantation – may cause inflammatory reactions. Inflammatory reactions after surgical interventions distant from the vascularised limbus and without opening of the anterior chamber of the eye are usually very muted, because of the corneal immune and angiogenic privilege. A milestone in the therapy and prophylaxis of inflammation after corneal surgery has been the use of topical glucocorticoids since the 1950s. When these are used, it is important to consider the cataractogenic effect of long-term use, the possibility of steroid-induced increase in intraocular pressure (so-called steroid response), the increased risk for microbial infection and the inhibition of epithelialisation. The available glucocorticoids differ in their ability to penetrate into the eye (prednisolone best), their immunosuppressive activity (dexamethasone best) and their ability to induce a steroid response (loteprednol etabonate and fluorometholone least). Preservative-free formulations are only available for dexamethasone. The different properties must be taken into account when choosing the “best” glucocorticoid: If there is a risk of delay in epithelialisation of the wound, topical steroids should be avoided or if necessary, phosphate- and preservative-free dexamethasone should be used with caution. If efficiency in the posterior cornea or in the anterior chamber is important, e.g. after penetrating keratoplasty, prednisolone acetate should be used. If a steroid response is known, loteprednol etabonate or fluorometholone should be used. When allogeneic tissue is transplanted, long-term topical glucocorticoid use over 24 months or longer is necessary. After high-risk keratoplasty with allogeneic donor tissue, supplemental systemic immunosuppressive therapy with calcineurin inhibitors or mycophenolate mofetil over 6 to 12 months is recommended.
-
Literatur
- 1 Medzhitov R, Janeway jr. C. Innate immunity. N Engl J Med 2000; 343: 338-344
- 2 Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell 2010; 140: 805-820
- 3 Strbo N, Yin N, Stojadinovic O. Innate and Adaptive Immune Responses in Wound Epithelialization. Adv Wound Care (New Rochelle) 2014; 3: 492-501
- 4 Bliss MR. Hyperaemia. J Tissue Viability 1998; 8: 4-13
- 5 Tisato V, Perri P, Rimondi E. et al. Kinetic Profiles of Inflammatory Mediators in the Conjunctival Sac Fluid of Patients upon Photorefractive Keratectomy. Mediators Inflamm 2015; 2015: 942948
- 6 Cursiefen C, Maruyama K, Jackson DG. et al. Time course of angiogenesis and lymphangiogenesis after brief corneal inflammation. Cornea 2006; 25: 443-447
- 7 Bock F, Maruyama K, Regenfuss B. et al. Novel anti(lymph)angiogenic treatment strategies for corneal and ocular surface diseases. Prog Retin Eye Res 2013; 34: 89-124
- 8 Hori J, Joyce NC, Streilein JW. Immune privilege and immunogenicity reside among different layers of the mouse cornea. Invest Ophthalmol Vis Sci 2000; 41: 3032-3042
- 9 Cursiefen C, Chen L, Saint-Geniez M. et al. Nonvascular VEGF receptor 3 expression by corneal epithelium maintains avascularity and vision. Proc Natl Acad Sci U S A 2006; 103: 11405-11410
- 10 Salvador E, Shityakov S, Forster C. Glucocorticoids and endothelial cell barrier function. Cell Tissue Res 2014; 355: 597-605
- 11 van der Wijk AE, Canning P, van Heijningen RP. et al. Glucocorticoids exert differential effects on the endothelium in an in vitro model of the blood-retinal barrier. Acta Ophthalmol 2019; 97: 214-224 doi:10.1111/aos.13909
- 12 Perretti M, DʼAcquisto F. Annexin A1 and glucocorticoids as effectors of the resolution of inflammation. Nat Rev Immunol 2009; 9: 62-70
- 13 Song IH, Buttgereit F. Non-genomic glucocorticoid effects to provide the basis for new drug developments. Mol Cell Endocrinol 2006; 246: 142-146
- 14 Mitsui Y, Hanabusa J. Corneal infections after cortisone therapy. Br J Ophthalmol 1955; 39: 244-250
- 15 Kadmiel M, Janoshazi A, Xu X. et al. Glucocorticoid action in human corneal epithelial cells establishes roles for corticosteroids in wound healing and barrier function of the eye. Exp Eye Res 2016; 152: 10-33
- 16 Armaly MF, Becker B. Intraocular pressure response to topical corticosteroids. Fed Proc 1965; 24: 1274-1278
- 17 Becker B. Intraocular Pressure Response to Topical Corticosteroids. Invest Ophthalmol 1965; 4: 198-205
- 18 Armaly MF. Effect of Corticosteroids on Intraocular Pressure and Fluid Dynamics. Ii. The Effect of Dexamethasone in the Glaucomatous Eye. Arch Ophthal 1963; 70: 492-499
- 19 Pleyer U, Ursell PG, Rama P. Intraocular pressure effects of common topical steroids for post-cataract inflammation: are they all the same?. Ophthalmol Ther 2013; 2: 55-72
- 20 Costagliola C, Cati-Giovannelli B, Piccirillo A. et al. Cataracts associated with long-term topical steroids. Br J Dermatol 1989; 120: 472-473
- 21 Black RL, Oglesby RB, Von Sallmann L. et al. Posterior subcapsular cataracts induced by corticosteroids in patients with rheumatoid arthritis. JAMA 1960; 174: 166-171
- 22 Behrens A, Seitz B, Langenbucher A. et al. Lens opacities after nonmechanical versus mechanical corneal trephination for keratoplasty in keratoconus. J Cataract Refract Surg 2000; 26: 1605-1611
- 23 James ER, Robertson L, Ehlert E. et al. Presence of a transcriptionally active glucocorticoid receptor alpha in lens epithelial cells. Invest Ophthalmol Vis Sci 2003; 44: 5269-5276
- 24 Gupta V, Wagner BJ. Expression of the functional glucocorticoid receptor in mouse and human lens epithelial cells. Invest Ophthalmol Vis Sci 2003; 44: 2041-2046
- 25 Gupta V, Galante A, Soteropoulos P. et al. Global gene profiling reveals novel glucocorticoid induced changes in gene expression of human lens epithelial cells. Mol Vis 2005; 11: 1018-1040
- 26 James ER, Fresco VM, Robertson LL. Glucocorticoid-induced changes in the global gene expression of lens epithelial cells. J Ocul Pharmacol Ther 2005; 21: 11-27
- 27 Awan MA, Agarwal PK, Watson DG. et al. Penetration of topical and subconjunctival corticosteroids into human aqueous humour and its therapeutic significance. Br J Ophthalmol 2009; 93: 708-713
- 28 Mataftsi A, Narang A, Moore W. et al. Do reducing regimens of fluorometholone for paediatric ocular surface disease cause glaucoma?. Br J Ophthalmol 2011; 95: 1531-1533
- 29 Stewart RH, Kimbrough RL. Intraocular pressure response to topically administered fluorometholone. Arch Ophthal 1979; 97: 2139-2140
- 30 Bartlett JD, Horwitz B, Laibovitz R. et al. Intraocular pressure response to loteprednol etabonate in known steroid responders. J Ocul Pharmacol 1993; 9: 157-165
- 31 Peyman GA, Herbst R. Bacterial endophthalmitis. Treatment with intraocular injection of gentamicin and dexamethasone. Arch Ophthal 1974; 91: 416-418
- 32 Sturman RM, Laval J, Sturman MF. Subconjunctival triamcinolone acetonide. Am J Ophthalmol 1966; 61: 155-166
- 33 Raghava S, Hammond M, Kompella UB. Periocular routes for retinal drug delivery. Expert Opin Drug Deliv 2004; 1: 99-114
- 34 Weijtens O, Feron EJ, Schoemaker RC. et al. High concentration of dexamethasone in aqueous and vitreous after subconjunctival injection. Am J Ophthalmol 1999; 128: 192-197
- 35 Weijtens O, Schoemaker RC, Lentjes EG. et al. Dexamethasone concentration in the subretinal fluid after a subconjunctival injection, a peribulbar injection, or an oral dose. Ophthalmology 2000; 107: 1932-1938
- 36 Vinciguerra P, Albe E, Vinciguerra R. et al. Long-term resolution of immunological graft rejection after a dexamethasone intravitreal implant. Cornea 2015; 34: 471-474
- 37 Pohlmann D, Winterhalter S, Pleyer U. Intravitreal Dexamethasone for the Treatment of CMO Associated with Refractory Sclerouveitis. Ocul Immunol Inflamm 2018; 26: 160-165
- 38 Fiorentzis M, Viestenz A, Viestenz A. et al. Intracameral Dexamethasone Injection as Adjuvant Therapy in Endothelial Immune Reaction after Penetrating and Posterior Lamellar Keratoplasty: A Retrospective Clinical Observation. Adv Ther 2017; 34: 1928-1935
- 39 Mills DW, Siebert LF, Climenhaga DB. Depot triamcinolone-induced glaucoma. Can J Ophthalmol 1986; 21: 150-152
- 40 Herschler J. Increased intraocular pressure induced by repository corticosteroids. Am J Ophthalmol 1976; 82: 90-93
- 41 Donnenfeld E, Holland E. Dexamethasone Intracameral Drug-Delivery Suspension for Inflammation Associated with Cataract Surgery: A Randomized, Placebo-Controlled, Phase III Trial. Ophthalmology 2018; 125: 799-806
- 42 Ziaei M, Manzouri B. Topical cyclosporine in corneal transplantation. Cornea 2015; 34: 110-115
- 43 Sinha R, Jhanji V, Verma K. et al. Efficacy of topical cyclosporine A 2 % in prevention of graft rejection in high-risk keratoplasty: a randomized controlled trial. Graefes Arch Clin Exp Ophthalmol 2010; 248: 1167-1172
- 44 Abudou M, Wu T, Evans JR. et al. Immunosuppressants for the prophylaxis of corneal graft rejection after penetrating keratoplasty. Cochrane Database Syst Rev 2015; (08) CD007603
- 45 Bock F, Matthaei M, Reinhard T. et al. High-dose subconjunctival cyclosporine a implants do not affect corneal neovascularization after high-risk keratoplasty. Ophthalmology 2014; 121: 1677-1682
- 46 Reinhard T, Mayweg S, Reis A. et al. Topical FK506 as immunoprophylaxis after allogeneic penetrating normal-risk keratoplasty: a randomized clinical pilot study. Transpl Int 2005; 18: 193-197
- 47 Reis A, Mayweg S, Birnbaum F. et al. Langzeitergebnisse mit FK 506-Augentropfen nach Hornhaut-Transplantation. Klin Monatsbl Augenheilkd 2008; 225: 57-61
- 48 Ghaffari R, Ghassemi H, Zarei-Ghanavati M. et al. Tacrolimus Eye Drops as Adjunct Therapy in Severe Corneal Endothelial Rejection Refractory to Corticosteroids. Cornea 2017; 36: 1195-1199
- 49 Seitz B, Sorken K, LaBree LD. et al. Corneal sensitivity and burning sensation. Comparing topical ketorolac and diclofenac. Arch Ophthal 1996; 114: 921-924
- 50 Feiz V, Oberg TJ, Kurz CJ. et al. Nepafenac-associated bilateral corneal melt after photorefractive keratectomy. Cornea 2009; 28: 948-950
- 51 Wolf EJ, Kleiman LZ, Schrier A. Nepafenac-associated corneal melt. J Cataract Refract Surg 2007; 33: 1974-1975
- 52 Lee WB, Himmel K. Corneal ulceration and perforation with ketorolac tromethamine. Cornea 2006; 25: 1268
- 53 Mian SI, Gupta A, Pineda 2nd R. Corneal ulceration and perforation with ketorolac tromethamine (Acular) use after PRK. Cornea 2006; 25: 232-234
- 54 Mohamed-Noriega K, Butron-Valdez K, Vazquez-Galvan J. et al. Corneal Melting after Collagen Cross-Linking for Keratoconus in a Thin Cornea of a Diabetic Patient Treated with Topical Nepafenac: A Case Report with a Literature Review. Case Rep Ophthalmol 2016; 7: 119-124
- 55 Reviglio VE, Rana TS, Li QJ. et al. Effects of topical nonsteroidal antiinflammatory drugs on the expression of matrix metalloproteinases in the cornea. J Cataract Refract Surg 2003; 29: 989-997
- 56 OʼBrien TP, Li QJ, Sauerburger F. et al. The role of matrix metalloproteinases in ulcerative keratolysis associated with perioperative diclofenac use. Ophthalmology 2001; 108: 656-659
- 57 Mayweg S, Reinhard T, Spelsberg H. et al. Stellenwert der systemischen Steroidtherapie nach Normalrisikokeratoplastik. Ophthalmologe 2005; 102: 497-501
- 58 Bertelmann E, Torun N, Pleyer U. Aktueller Stand der lokalen und systemischen Immunsuppression nach Keratoplastik. Klin Monatsbl Augenheilkd 2013; 230: 505-511
- 59 Pleyer U. Immunmodulation bei perforierender Keratoplastik. Ophthalmologe 2003; 100: 1036-1044
- 60 Holland EJ, Mogilishetty G, Skeens HM. et al. Systemic immunosuppression in ocular surface stem cell transplantation: results of a 10-year experience. Cornea 2012; 31: 655-661
- 61 Reinhard T, Kontopoulos T, Wernet P. et al. Langzeitergebnisse der homologen perforierenden Limbokeratoplastik bei totaler Limbusstammzellinsuffizienz nach Verätzungen/Verbrennungen. Ophthalmologe 2004; 101: 682-687
- 62 Di Zazzo A, Kheirkhah A, Abud TB. et al. Management of high-risk corneal transplantation. Surv Ophthalmol 2017; 62: 816-827
- 63 Reis A, Reinhard T, Voiculescu A. et al. Mycophenolate mofetil versus cyclosporin A in high risk keratoplasty patients: a prospectively randomised clinical trial. Br J Ophthalmol 1999; 83: 1268-1271
- 64 Reinhard T, Reis A, Bohringer D. et al. Systemic mycophenolate mofetil in comparison with systemic cyclosporin A in high-risk keratoplasty patients: 3 yearsʼ results of a randomized prospective clinical trial. Graefes Arch Clin Exp Ophthalmol 2001; 239: 367-372
- 65 Gimenez F, Foeillet E, Bourdon O. et al. Evaluation of pharmacokinetic interactions after oral administration of mycophenolate mofetil and valaciclovir or aciclovir to healthy subjects. Clin Pharmacokinet 2004; 43: 685-692
- 66 Nguyen NX, Seitz B, Martus P. et al. Long-term topical steroid treatment improves graft survival following normal-risk penetrating keratoplasty. Am J Ophthalmol 2007; 144: 318-319
- 67 Anshu A, Price MO, Price jr. FW. Risk of corneal transplant rejection significantly reduced with Descemetʼs membrane endothelial keratoplasty. Ophthalmology 2012; 119: 536-540
- 68 Steven P, Hos D, Heindl LM. et al. Immunreaktionen nach DMEK, DSAEK und DALK. Klin Monatsbl Augenheilkd 2013; 230: 494-499
- 69 Hos D, Tuac O, Schaub F. et al. Incidence and Clinical Course of Immune Reactions after Descemet Membrane Endothelial Keratoplasty: Retrospective Analysis of 1000 Consecutive Eyes. Ophthalmology 2017; 124: 512-518
- 70 Price MO, Feng MT, Scanameo A. et al. Loteprednol Etabonate 0.5 % Gel Vs. Prednisolone Acetate 1 % Solution after Descemet Membrane Endothelial Keratoplasty: Prospective Randomized Trial. Cornea 2015; 34: 853-858
- 71 Price MO, Price jr. FW, Kruse FE. et al. Randomized comparison of topical prednisolone acetate 1 % versus fluorometholone 0.1 % in the first year after descemet membrane endothelial keratoplasty. Cornea 2014; 33: 880-886
- 72 Price MO, Scanameo A, Feng MT. et al. Descemetʼs Membrane Endothelial Keratoplasty: Risk of Immunologic Rejection Episodes after Discontinuing Topical Corticosteroids. Ophthalmology 2016; 123: 1232-1236
- 73 Matthaei M, Schrittenlocher S, Hos D. et al. Zehn Jahre „Descemet membrane endothelial keratoplasty“ bei Fuchs-Dystrophie: Was haben wir gelernt?. Ophthalmologe 2018;
- 74 Hoerster R, Stanzel TP, Bachmann BO. et al. Intensified Topical Steroids as Prophylaxis for Macular Edema after Posterior Lamellar Keratoplasty Combined with Cataract Surgery. Am J Ophthalmol 2016; 163: 174-179.e2
- 75 Schaub F, Heindl LM, Enders P. et al. Tiefe anteriore lamelläre Keratoplastik: Erfahrungen und Ergebnisse der ersten 100 konsekutiven DALK aus der Kölner Universitätsaugenklinik. Ophthalmologe 2017; 114: 1019-1026