Onkologische Welt 2019; 10(02): 69-74
DOI: 10.1055/a-0864-6411
Originalartikel
© Georg Thieme Verlag KG Stuttgart · New York

Genetic profiling in der Diagnostik des hereditären Prostatakarzinoms – wo stehen wir?

Genetic profiling in the diagnosis of hereditary prostate cancer: Where do we stand?
Katharina Boehm
1   Johannes Gutenberg Universität, Universitätsmedizin, Klinik und Poliklinik für Urologie und Kinderurologie, Mainz
,
Christian Thomas
1   Johannes Gutenberg Universität, Universitätsmedizin, Klinik und Poliklinik für Urologie und Kinderurologie, Mainz
,
Igor Tsaur
1   Johannes Gutenberg Universität, Universitätsmedizin, Klinik und Poliklinik für Urologie und Kinderurologie, Mainz
› Author Affiliations
Further Information

Publication History

Publication Date:
24 May 2019 (online)

Zusammenfassung

Prostatakrebs weist im Vergleich zu anderen Tumorentitäten ein heterogenes genetisches Profil auf. Dementsprechend sind auch Mutationen, die das Prostatakarzinomrisiko erhöhen, vielfältig. Manche genetische Varianten fallen bei der Risikoerhöhung nur milde ins Gewicht. Andere Genmutationen (BRCA1/2; HOXB13) erhöhen das Risiko jedoch teils erheblich. Insgesamt ist die Wahrscheinlichkeit für einen nicht familiär vorbelasteten Mann, ein Träger von Mutationen zu sein, welche mit einem erhöhten PCa-Risiko assoziiert sind, niedrig. Ist aber die familiäre Belastung durch in jungem Alter erkrankte Verwandte oder eine bereits bekannte Mutation in der Familie vorhanden, so steigt auch diese Wahrscheinlichkeit an. In diesen Fällen sollte die genetische Beratung und Testung in Betracht gezogen werden. Insbesondere soll hier an BRCA1/2-Mutationen und HOXB13-Mutationen gedacht werden. Für die breite Bevölkerungsmasse kann genetic profiling bislang jedoch nicht die PSA-Wert-Bestimmung, mpMRT der Prostata und/oder die Prostatabiopsie im Rahmen der Vorsorge oder des diagnostischen Algorithmus ersetzen. Lediglich können Männer bei Vorliegen der mit PCa assoziierten Mutationen einem engmaschigeren und früheren Screening unterzogen werden und ggf. früher eine definitive Therapie erhalten.

ABSTRACT

Prostate cancer has a heterogeneous genetic profile compared with other tumour entities. Accordingly, there are also various mutations that increase the risk of prostate cancer. Some genetic variants only have a mild impact, whereas other gene mutations (BRCA1/2; HOXB13) may increase the risk significantly. All in all, a man with a negative family history is unlikely to be a carrier of mutations that are associated with an increased risk of PCa. However, this likelihood increases if the family history is positive for a known mutation or if there are relatives who were affected at an early age. In such cases, genetic counselling and testing should be considered, with a particular focus on BRCA1/2 mutations and HOXB13 mutations. However, genetic profiling has not had the potential to replace PSA testing, mpMRI of the prostate gland and/or prostate biopsies as part of cancer screening or the diagnostic algorithm in the general population. The presence of mutations associated with PCa merely allows patients to undergo screening earlier and in tighter intervals and possibly receive earlier definitive treatment.

 
  • Literatur

  • 1 Buzzoni C. et al. Metastatic Prostate Cancer Incidence and Prostate-specific Antigen Testing: New Insights from the European Randomized Study of Screening for Prostate Cancer.. Eur Urol 2015; 68: 885-890.
  • 2 Leitlinienprogramm Onkologie. Deutsche Krebsgesellschaft, D. K., AWMF. Interdisziplinäre Leitlinie der Qualität S3 zur Früherkennung, Diagnose und Therapie der verschiedenen Stadien des Prostatakarzinoms Langversion 5.0.. 2018 Available from: http://www.leitlinienprogramm/onkologie.de/leitlinien/prostatakarzinom/
  • 3 Zeegers MP, Jellema A, Ostrer H. Empiric risk of prostate carcinoma for relatives of patients with prostate carcinoma: a meta-analysis.. Cancer 2003; 97: 1894-1903.
  • 4 Johns LE, Houlston RS. A systematic review and meta-analysis of familial prostate cancer risk.. BJU Int 2003; 91: 789-794.
  • 5 Siddiqui MM. et al. Comparison of MR/ultrasound fusion-guided biopsy with ultrasound-guided biopsy for the diagnosis of prostate cancer.. JAMA 2015; 313: 390-397.
  • 6 Schroder FH. et al. Screening and prostate-cancer mortality in a randomized European study.. N Engl J Med 2009; 360: 1320-1328.
  • 7 Roobol MJ. et al. Screening for prostate cancer: results of the Rotterdam section of the European randomized study of screening for prostate cancer.. Eur Urol 2013; 64: 530-539.
  • 8 Schroder FH. et al. Screening and prostate cancer mortality: results of the European Randomised Study of Screening for Prostate Cancer (ERSPC) at 13 years of follow-up.. Lancet 2014; 384: 2027-2035.
  • 9 Zappala SM. et al. Clinical performance of the 4Kscore Test to predict high-grade prostate cancer at biopsy: A meta-analysis of us and European clinical validation study results.. Rev Urol 2017; 19: 149-155.
  • 10 Wang W. et al. Diagnostic ability of %p2PSA and prostate health index for aggressive prostate cancer: a meta-analysis.. Sci Rep 2014; 4: 5012
  • 11 Loeb S. et al. Prospective multicenter evaluation of the Beckman Coulter Prostate Health Index using WHO calibration.. J Urol 2013; 189: 1702-1706.
  • 12 Wang X. et al. Autoantibody signatures in prostate cancer.. N Engl J Med 2005; 353: 1224-1235.
  • 13 Schipper M. et al. Novel prostate cancer biomarkers derived from auto-antibody signatures.. Transl Oncol 2015; 8: 106-111.
  • 14 de la Taille A. et al. Clinical evaluation of the PCA3 assay in guiding initial biopsy decisions.. J Urol 2011; 185: 2119-2125.
  • 15 Gittelman MC. et al. PCA3 molecular urine test as a predictor of repeat prostate biopsy outcome in men with previous negative biopsies: a prospective multicenter clinical study.. J Urol 2013; 190: 64-69.
  • 16 Wallis CJ, Nam RK. Prostate Cancer Genetics: A Review.. EJIFCC 2015; 26: 79-91.
  • 17 Cybulski C. et al. A personalised approach to prostate cancer screening based on genotyping of risk founder alleles.. Br J Cancer 2013; 108: 2601-2609.
  • 18 Verhage BA. et al. Autosomal dominant inheritance of prostate cancer: a confirmatory study.. Urology 2001; 57: 97-101.
  • 19 Hjelmborg JB. et al. The heritability of prostate cancer in the Nordic Twin Study of Cancer.. Cancer Epidemiol Biomarkers Prev 2014; 23: 2303-2310.
  • 20 Carter BS. et al. Hereditary prostate cancer: epidemiologic and clinical features.. J Urol 1993; 150: 797-802.
  • 21 Eeles R. et al. The genetic epidemiology of prostate cancer and its clinical implications.. Nat Rev Urol 2014; 11: 18-31.
  • 22 Karlsson R. et al. A population-based assessment of germline HOXB13 G84E mutation and prostate cancer risk.. Eur Urol 2014; 65: 169-176.
  • 23 Kote-Jarai Z. et al. Prevalence of the HOXB13 G84E germline mutation in British men and correlation with prostate cancer risk, tumour characteristics and clinical outcomes.. Ann Oncol 2015; 26: 756-761.
  • 24 Ewing CM. et al. Germline mutations in HOXB13 and prostate-cancer risk.. N Engl J Med 2012; 366: 141-149.
  • 25 Hall JM. et al. Linkage of early-onset familial breast cancer to chromo-some 17q21.. Science 1990; 250: 1684-1689.
  • 26 Bancroft EK. et al. Targeted prostate cancer screening in BRCA1 and BRCA2 mutation carriers: results from the initial screening round of the IMPACT study.. Eur Urol 2014; 66: 489-499.
  • 27 Thompson D, Easton DF, Easton C. Breast Cancer Linkage, Cancer Incidence in BRCA1 mutation carriers.. J Natl Cancer Inst 2002; 94: 1358-1365.
  • 28 Leongamornlert D. et al. Germline BRCA1 mutations increase prostate cancer risk.. Br J Cancer 2012; 106: 1697-1701.
  • 29 Ostrander EA, Udler MS. The role of the BRCA2 gene in susceptibility to prostate cancer revisited.. Cancer Epidemiol Biomarkers Prev 2008; 17: 1843-1848.
  • 30 Breast Cancer Linkage Consortium Cancer risks in BRCA2 mutation carriers.. J Natl Cancer Inst 1999; 91: 1310-1316.
  • 31 Na R. et al. Germline Mutations in ATM and BRCA1/2 Distinguish Risk for Lethal and Indolent Prostate Cancer and are Associated with Early Age at Death.. Eur Urol 2017; 71: 740-747.
  • 32 Ryan S, Jenkins MA, Win AK. Risk of prostate cancer in Lynch syndrome: a systematic review and meta-analysis.. Cancer Epidemiol Biomarkers Prev 2014; 23: 437-449.
  • 33 Southey MC. et al. PALB2, CHEK2 and ATM rare variants and cancer risk: data from COGS.. J Med Genet 2016; 53: 800-811.
  • 34 Zheng SL. et al. Cumulative association of five genetic variants with prostate cancer.. N Engl J Med 2008; 358: 910-919.
  • 35 NCCN Guidelines Version 2. 2018 Prostate Cancer Early DetectionNCC Network 2018
  • 36 Giri VN. et al. Role of Genetic Testing for Inherited Prostate Cancer Risk: Philadelphia Prostate Cancer Consensus Conference 2017.. J Clin Oncol 2018; 36: 414-424.