Klin Monbl Augenheilkd 2019; 236(04): 598-601
DOI: 10.1055/a-0867-5779
Statement
Georg Thieme Verlag KG Stuttgart · New York

Empfehlungen bei progredienter Myopie im Kindes- und Jugendalter[*]

Stellungnahme von DOG und BVA. Stand Dezember 2018 Berufsverband der Augenärzte Deutschlands e.V. (BVA), Deutsche Ophthalmologische Gesellschaft (DOG)
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
27. März 2019 (online)

Epidemiologie

Bis zum Ende der Grundschulzeit werden in Deutschland aktuell ca. 15% aller Kinder myop [1]. Die Rate steigt auf bis auf ca. 45% im Alter von 25 Jahren [2]. Weltweit wird zwar eine Zunahme der Myopie beobachtet [3], in Deutschland jedoch ist die Rate der Myopie bei Brillenverordnungen in den letzten 15 Jahren unter den Jugendlichen vorerst konstant geblieben [4]. Insbesondere die hohe Myopie ist neben dem Faktor Lebensalter der Hauptrisikofaktor für degenerative Augenerkrankungen wie Katarakt, Glaukom, Netzhautablösung und myope Makuladegeneration [5]. Somit kommt der Minderung von Myopieprogression im Kindesalter eine besondere Bedeutung zu.

* Diese Stellungnahme erscheint ebenfalls in der Zeitschrift Der Ophthalmologe, Springer Verlag, Heidelberg.


 
  • Literatur

  • 1 Schuster AK, Elflein HM, Pokora R. et al. Prevalence and risk factors of myopia in children and adolescents in Germany – results of the KiGGS survey. Klin Padiatr 2017; 229: 234-240
  • 2 Williams KM, Verhoeven VJ, Cumberland P. et al. Prevalence of refractive error in Europe: the European Eye Epidemiology (E(3)) Consortium. Eur J Epidemiol 2015; 30: 305-315
  • 3 Holden BA, Fricke TR, Wilson DA. et al. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050. Ophthalmology 2016; 123: 1036-1042
  • 4 Wesemann W. Analysis of spectacle lens prescriptions shows no increase of myopia in Germany from 2000 to 2015. Ophthalmologe 2017; DOI: 10.1007/s00347-017-0601-0.
  • 5 Flitcroft DI. The complex interactions of retinal, optical and environmental factors in myopia aetiology. Prog Retin Eye Res 2012; 31: 622-660
  • 6 Tedja MS, Wojciechowski R, Hysi PG. et al. Genome-wide association meta-analysis highlights light-induced signaling as a driver for refractive error. Nat Genet 2018; 50: 834-848
  • 7 Jones LA, Sinnott LT, Mutti DO. et al. Parental history of myopia, sports and outdoor activities, and future myopia. Invest Ophthalmol Vis Sci 2007; 48: 3524-3532
  • 8 Jones-Jordan LA, Sinnott LT, Manny RE. et al. Early childhood refractive error and parental history of myopia as predictors of myopia. Invest Ophthalmol Vis Sci 2010; 51: 115-121
  • 9 French AN, Ashby RS, Morgan IG. et al. Time outdoors and the prevention of myopia. Exp Eye Res 2013; 114: 58-68
  • 10 Xiong S, Sankaridurg P, Naduvilath T. et al. Time spent in outdoor activities in relation to myopia prevention and control: a meta-analysis and systematic review. Acta Ophthalmol (Copenh) 2017; 95: 551-566
  • 11 He M, Xiang F, Zeng Y. et al. Effect of time spent outdoors at school on the development of myopia among children in China: a randomized clinical trial. JAMA 2015; 314: 1142-1148
  • 12 Jin JX, Hua WJ, Jiang X. et al. Effect of outdoor activity on myopia onset and progression in school-aged children in northeast China: the Sujiatun Eye Care Study. BMC Ophthalmol 2015; 15: 73
  • 13 Gwiazda J, Deng L, Manny R. et al. COMET Study Group. Seasonal variations in the progression of myopia in children enrolled in the correction of myopia evaluation trial. Invest Ophthalmol Vis Sci 2014; 55: 752-758
  • 14 Wu PC, Chen CT, Lin KK. et al. Myopia prevention and outdoor light intensity in a school-based cluster randomized trial. Ophthalmology 2018; 125: 1239-1250
  • 15 Karouta C, Ashby RS. Correlation between light levels and the development of deprivation myopia. Invest Ophthalmol Vis Sci 2014; 56: 299-309
  • 16 Mountjoy E, Davies NM, Plotnikov D. et al. Education and myopia: assessing the direction of causality by mendelian randomisation. BMJ 2018; 361: k2022
  • 17 Ip JM, Rose KA, Morgan IG. et al. Myopia and the urban environment: findings in a sample of 12-year-old Australian school children. Invest Ophthalmol Vis Sci 2008; 49: 3858-3863
  • 18 Prousali E, Mataftsi A, Ziakas N. et al. Interventions to control myopia progression in children: protocol for an overview of systematic reviews and meta-analyses. Syst Rev 2017; 6: 188
  • 19 Wolffsohn JS, Calossi A, Cho P. et al. Global trends in myopia management attitudes and strategies in clinical practice. Contact Lens Anterior Eye 2016; 39: 106-116
  • 20 Lagrèze WA, Schaeffel F. Preventing myopia. Dtsch Arztebl Int 2017; 114: 575-580
  • 21 Derby H. On the atropine treatment of acquired and progressive myopia. Trans Am Ophthalmol Soc 1874; 2: 139-154
  • 22 Huang J, Wen D, Wang Q. et al. Efficacy comparison of 16 interventions for myopia control in children: a network meta-analysis. Ophthalmology 2016; DOI: 10.1016/j.ophtha.2015.11.010.
  • 23 Gong Q, Janowski M, Luo M. et al. Efficacy and adverse effects of atropine in childhood myopia: a meta-analysis. JAMA Ophthalmol 2017; 135: 624-630
  • 24 Chia A, Lu QS, Tan D. Five-year clinical trial on atropine for the treatment of myopia 2: myopia control with atropine 0.01 % eyedrops. Ophthalmology 2016; DOI: 10.1016/j.ophtha.2015.07.004.
  • 25 Lagrèze WA. Myopia. Ophthalmologe 2016; DOI: 10.1007/s00347-016-0384-8.
  • 26 Polling JR, Kok RGW, Tideman JWL. et al. Effectiveness study of atropine for progressive myopia in Europeans. Eye 2016; 30: 998-1004
  • 27 Kollbaum PS, Jansen ME, Tan J. et al. Vision performance with a contact lens designed to slow myopia progression. Optom Vis Sci 2013; 90: 205-214
  • 28 Lin HJ, Wan L, Tsai FJ. et al. Overnight orthokeratology is comparable with atropine in controlling myopia. BMC Ophthalmol 2014; 14: 40
  • 29 Cho P, Cheung SW. Protective role of orthokeratology in reducing risk of rapid axial elongation: a reanalysis of data from the ROMIO and TO-SEE studies. Invest Ophthalmol Vis Sci 2017; 58: 1411-1416
  • 30 Chen C, Cheung SW, Cho P. Myopia control using toric orthokeratology (TO-SEE study). Invest Ophthalmol Vis Sci 2013; 54: 6510-6517
  • 31 Tsukiyama J, Miyamoto Y, Higaki S. et al. Changes in the anterior and posterior radii of the corneal curvature and anterior chamber depth by orthokeratology. Eye Contact Lens 2008; 34: 17-20
  • 32 Cheung SW, Cho P. Validity of axial length measurements for monitoring myopic progression in orthokeratology. Invest Ophthalmol Vis Sci 2013; 54: 1613-1615
  • 33 Hung LF, Arumugam B, Ostrin L. et al. The adenosine receptor antagonist, 7-methylxanthine, alters emmetropizing responses in infant macaques. Invest Ophthalmol Vis Sci 2018; 59: 472-486