Aktuelle Dermatologie 2019; 45(07): 336-342
DOI: 10.1055/a-0881-6924
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Pflanzliche Ceramide zur kosmetischen Anwendung

Plant Ceramides for Cosmetic Use
E. N. Tessema
1   Institut für angewandte Dermatopharmazie, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale)
,
R. H. H. Neubert
1   Institut für angewandte Dermatopharmazie, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale)
,
J. Wohlrab
1   Institut für angewandte Dermatopharmazie, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale)
2   Klinik für Dermatologie und Venerologie, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale)
› Author Affiliations
Further Information

Publication History

Publication Date:
16 July 2019 (online)

Zusammenfassung

Die Bedeutung von Ceramiden als aktive Inhaltstoffe in kosmetischen Präparaten hat in den letzten Jahren erheblich an Bedeutung gewonnen. Im dermatologischen Kontext werden Ceramide meist in Kombination mit anderen Lipiden sowie weiteren kosmetischen Wirkstoffen in Präparaten zur Barriereprotektion und -regeneration bei chronisch-entzündlichen Hauterkrankungen bzw. bei Diabetes mellitus oder Altershaut eingesetzt. Da die Herstellung von synthetischen Ceramiden sehr kostenintensiv ist, kann die Verwendung von pflanzlichen Ceramiden mit vergleichbaren physikochemischen Eigenschaften eine Alternative darstellen. Neuere Verfahren ermöglichen die Glykosylierung dieser aus Pflanzenextrakten isolierten Ceramide und deren Einsatz in kosmetischen Zubereitungen. Weitere Untersuchungen müssen klären, ob sich glykosylierte pflanzliche Ceramide in die natürlichen Lipidmembranen im Stratum corneum integrieren und welche funktionellen Auswirkungen sie auf die Barrierefunktion haben. Die bisherigen Daten begründen ein großes Potenzial pflanzlicher Ceramide für die Barriere-protektive Anwendung in kosmetischen Präparaten.

Abstract

Ceramides as active ingredients in cosmetic preparations became more and more important in recent years. In dermatology, ceramides combined with other lipids and other cosmetic ingredients are mostly used in preparations for barrier protection and regeneration in patients with chronic inflammatory skin conditions, diabetes mellitus, or for aging skin. Since the production of synthetic ceramides is very expensive, the use of plant-based ceramides with comparable physico-chemical properties may be an alternative. New methods allow the glycosylation of these ceramides extracted from plants and their application in cosmetic preparations. Further investigations are needed to prove the integration of glycosylated plant-based ceramides into the natural lipid membranes of the stratum corneum, and to determine the functional effects on the skin barrier. Existing data predicate a great potential of plant-based ceramides for barrier protective cosmetic preparations.

 
  • Literatur

  • 1 Menon GK, Cleary GW, Lane ME. The structure and function of the stratum corneum. Int J Pharm 2012; 435: 3-9
  • 2 Wartewig S, Neubert RH. Properties of ceramides and their impact on the stratum corneum structure: a review. Part 1: ceramides. Skin Pharmacol Physiol 2007; 20: 220-229
  • 3 Masukawa Y, Narita H, Shimizu E. et al. Characterization of overall ceramide species in human stratum corneum. J Lipid Res 2008; 49: 1466-1476
  • 4 Masukawa Y, Narita H, Sato H. et al. Comprehensive quantification of ceramide species in human stratum corneum. J Lipid Res 2009; 50: 1708-1719
  • 5 t’Kindt R, Jorge L, Dumont E. et al. Profiling and characterizing skin ceramides using reversed-phase liquid chromatography-quadrupole time-of-flight mass spectrometry. Anal Chem 2012; 84: 403-11
  • 6 Robson KJ, Stewart ME, Michelsen S. et al. 6-Hydroxy-4-sphingenine in human epidermal ceramides. J Lipid Res 1994; 35: 2060-2068
  • 7 Farwanah H, Raith K, Neubert RHH. et al. Ceramide profiles of the uninvolved skin in atopic dermatitis and psoriasis are comparable to those of healthy skin. Archives of Dermatological Research 2005; 296: 514-521
  • 8 Farwanah H, Wohlrab J, Neubert RH. et al. Profiling of human stratum corneum ceramides by means of normal phase LC/APCI-MS. Anal Bioanal Chem 2005; 383: 632-637
  • 9 Imokawa G, Abe A, Jin K. et al. Decreased Level of Ceramides in Stratum-Corneum of Atopic-Dermatitis - an Etiologic Factor in Atopic Dry Skin. Journal of Investigative Dermatology 1991; 96: 523-526
  • 10 Motta S, Monti M, Sesana S. et al. Abnormality of Water Barrier Function in Psoriasis – Role of Ceramide Fractions. Archives of Dermatology 1994; 130: 452-56
  • 11 Rogers J, Harding C, Mayo A. et al. Stratum corneum lipids: The effect of ageing and the seasons. Archives of Dermatological Research 1996; 288: 765-70
  • 12 Sahle FF, Gebre-Mariam T, Dobner B. et al. Skin Diseases Associated with the Depletion of Stratum Corneum Lipids and Stratum Corneum Lipid Substitution Therapy. Skin Pharmacology and Physiology 2015; 28: 42-55
  • 13 Di Nardo A, Wertz P, Giannetti A. et al. Ceramide and cholesterol composition of the skin of patients with atopic dermatitis. Acta Dermato-Venereologica 1998; 78: 27-30
  • 14 Pata MO, Hannun YA, Ng CKY. Plant sphingolipids: decoding the enigma of the Sphinx. New Phytologist 2010; 185: 611-630
  • 15 Motta S, Monti M, Sesana S. et al. Ceramide Composition of the Psoriatic Scale. Biochimica Et Biophysica Acta 1993; 1182: 147-151
  • 16 Bellew S, Del Rosso JQ. Overcoming the Barrier Treatment of Ichthyosis: A Combination-therapy Approach. J Clin Aesthet Dermatol 2010; 3: 49-53
  • 17 Vavrova K, Hrabalek A, Mac-Mary S. et al. Ceramide analogue 14S24 selectively recovers perturbed human skin barrier. Br J Dermatol 2007; 157: 704-12
  • 18 Hon KL, Leung AK. Use of ceramides and related products for childhood-onset eczema. Recent Pat Inflamm Allergy Drug Discov 2013; 7: 12-19
  • 19 Park KY, Kim DH, Jeong MS. et al. Changes of antimicrobial peptides and transepidermal water loss after topical application of tacrolimus and ceramide-dominant emollient in patients with atopic dermatitis. J Korean Med Sci 2010; 25: 766-71
  • 20 Critchley P, Rawlings AV, Scott IR. Preventive or remedy for atopic dermatitis. 2011 Patent JP2011079856A2
  • 21 Grassberger M, Hirsch S, Mayer FK. et al. Pharmaceutical composition comprising a macrolide immunomodulator. 2004/2007. Patent WO04087202
  • 22 Skold T. Water-based delivery systems. 2011 Patent US8029810
  • 23 Lynch DV, Dunn TM. An introduction to plant sphingolipids and a review of recent advances in understanding their metabolism and function. New Phytologist 2004; 161: 677-702
  • 24 Sullards MC, Lynch DV, Merrill Jr. AH. et al. Structure determination of soybean and wheat glucosylceramides by tandem mass spectrometry. J Mass Spectrom 2000; 35: 347-353
  • 25 Markham JE, Lynch DV, Napier JA. et al. Plant sphingolipids: function follows form. Curr Opin Plant Biol 2013; 16: 350-357
  • 26 Bouwstra JA, Honeywell-Nguyen PL. Skin structure and mode of action of vesicles. Adv Drug Deliv Rev 2002; 54 (Suppl. 01) S41-S55
  • 27 Kessner D, Kiselev M, Dante S. et al. Arrangement of ceramide [EOS] in a stratum corneum lipid model matrix: new aspects revealed by neutron diffraction studies. Eur Biophys J 2008; 37: 989-99
  • 28 Schroter A, Kessner D, Kiselev MA. et al. Basic Nanostructure of Stratum Corneum Lipid Matrices Based on Ceramides [EOS] and [AP]: A Neutron Diffraction Study. Biophysical Journal 2009; 97: 1104-1114
  • 29 Bouwstra JA, Ponec M. The skin barrier in healthy and diseased state. Biochim Biophys Acta 2006; 1758: 2080-2095
  • 30 Loden M. The skin barrier and use of moisturizers in atopic dermatitis. Clin Dermatol 2003; 21: 145-57
  • 31 Heuschkel S, Goebel A, Neubert RH. Microemulsions – modern colloidal carrier for dermal and transdermal drug delivery. J Pharm Sci 2008; 97: 603-631
  • 32 Sahle FF, Metz H, Wohlrab J. et al. Polyglycerol fatty acid ester surfactant-based microemulsions for targeted delivery of ceramide AP into the stratum corneum: formulation, characterisation, in vitro release and penetration investigation. Eur J Pharm Biopharm 2012; 82: 139-150
  • 33 Sahle FF, Metz H, Wohlrab J. et al. Lecithin-based microemulsions for targeted delivery of ceramide AP into the stratum corneum: formulation, characterizations, and in vitro release and penetration studies. Pharm Res 2013; 30: 538-551
  • 34 Sahle FF, Wohlrab J, Neubert RH. Controlled penetration of ceramides into and across the stratum corneum using various types of microemulsions and formulation associated toxicity studies. Eur J Pharm Biopharm 2014; 86: 244-250
  • 35 Reisberg M, Arnold N, Porzel A. et al. Production of Rare Phyto-Ceramides from Abundant Food Plant Residues. J Agric Food Chem 2017; 65: 1507-1517
  • 36 Tessema EN, Gebre-Mariam T, Lange S. et al. Potential application of oat-derived ceramides in improving skin barrier function: Part 1. Isolation and structural characterization. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1065-1066: 87-95
  • 37 Tessema EN, Gebre-Mariam T, Paulos G. et al. Delivery of Oat-derived Phytoceramides into the Stratum Corneum of the Skin using Nanocarriers: Formulation, Characterization and in vitro and ex-vivo Penetration Studies. Eur J Pharm Biopharm 2018; 127: 260-269
  • 38 Tessema EN, Gebre-Mariam T, Frolov A. et al. Development and validation of LC/APCI-MS method for the quantification of oat ceramides in skin permeation studies. Anal Bioanal Chem 2018; 410: 4775-85
  • 39 Tokudome Y, Endo M, Hashimoto F. Application of glucosylceramide-based liposomes increased the ceramide content in a three-dimensional cultured skin epidermis. Skin Pharmacol Physiol 2014; 27: 18-24
  • 40 Shimoda H, Terazawa S, Hitoe S. et al. Changes in ceramides and glucosylceramides in mouse skin and human epidermal equivalents by rice-derived glucosylceramide. J Med Food 2012; 15: 1064-1072
  • 41 Shimada E, Aida K, Sugawara T. et al. Inhibitory effect of topical maize glucosylceramide on skin photoaging in UVA-irradiated hairless mice. J Oleo Sci 2011; 60: 321-325
  • 42 Neubert RHH, Sonnenberger S, Dobner B. et al. Controlled Penetration of a Novel Dimeric Ceramide into and across the Stratum Corneum Using Microemulsions and Various Types of Semisolid Formulations. Skin Pharmacology and Physiology 2016; 29: 130-134
  • 43 Imai H, Morimoto Y, Tamura K. Sphingoid base composition of monoglucosylceramide in Brassicaceae. Journal of Plant Physiology 2000; 157: 453-456
  • 44 Karlsson KA. On the chemistry and occurrence of sphingolipid long-chain bases. Chem Phys Lipids 1970; 5: 6-43