Nervenheilkunde 2019; 38(06): 381-388
DOI: 10.1055/a-0883-8064
Schwerpunkt
© Georg Thieme Verlag KG Stuttgart · New York

Distale Myopathien

Klassifikation, Phänotypen, Genotypen und diagnostisches VorgehenDistal myopathiesClassification, phenotypes, genotypes and diagnostic procedure
Alexander Mensch
1   Universitätsklinik und Poliklinik für Neurologie, Universitätsklinikum Halle (Saale), Martin-Luther-Universität Halle-Wittenberg (Saale)
,
Stephan Zierz
1   Universitätsklinik und Poliklinik für Neurologie, Universitätsklinikum Halle (Saale), Martin-Luther-Universität Halle-Wittenberg (Saale)
,
Torsten Kraya
1   Universitätsklinik und Poliklinik für Neurologie, Universitätsklinikum Halle (Saale), Martin-Luther-Universität Halle-Wittenberg (Saale)
› Author Affiliations
Further Information

Publication History

Publication Date:
12 June 2019 (online)

ZUSAMMENFASSUNG

Distale Myopathien stellen eine heteroge Gruppe von Erkrankungen dar, die sich durch einen prädominanten Befall körperferner Muskelgruppen auszeichnen und zunächst innerhalb weniger klinischer Phänotypen unter Verwendung von Eponymen klassifiziert worden sind. Genetische Hochdurchsatzverfahren haben das genotypische Spektrum der distalen Myopathien in den letzten Jahren erheblich erweitert. Ausgehend vom historischen Kontext wird die aktuelle Klassifikation distaler Myopathien vorgestellt, häufige Krankheitsbilder diskutiert und das diagnostische Vorgehen anhand eines strukturierten Handlungspfades erörtert.

ABSTRACT

Distal myopathies represent a heterogeneous group of muscular disorders that show a predominant involvement of distal limb muscles. In the past they were classified based on clinical phenotypes by use of eponyms. Recently, high-throughput methods have significantly expanded the genotypic spectrum of this disease entity. Based on the historical context the current classification of distal myopathies is presented, common clinical pictures are discussed and the diagnostic procedure based on a structured diagnostic pathway is described.

 
  • Literatur

  • 1 Barohn RJ, Amato AA, Griggs RC. Overview of distal myopathies: from the clinical to the molecular. Neuromuscul Disord 1998; 8: 309-316.
  • 2 Udd B. Distal myopathies. Curr Neurol Neurosci Rep 2014; 14: 434
  • 3 Gowers WR. A Lecture on Myopathy and a Distal Form: Delivered at the National Hospital for the Paralysed and Epileptic. Br Med J 1902; 2: 89-92.
  • 4 Laing NG, Laing BA, Meredith C. et al Autosomal dominant distal myopathy: linkage to chromosome 14. Am J Hum Genet 1995; 56: 422-427.
  • 5 Welander L. Myopathia distalis tarda hereditaria; 249 examined cases in 72 pedigrees. Acta Med Scand Suppl 1951; 265: 1-124.
  • 6 Markesbery WR, Griggs RC, Leach RP. et al Late onset hereditary distal myopathy. Neurology 1974; 24: 127-134.
  • 7 Miyoshi K, Kawai H, Iwasa M. et al Autosomal recessive distal muscular dystrophy as a new type of progressive muscular dystrophy. Seventeen cases in eight families including an autopsied case. Brain 1986; 109 (Pt 1) 31-54.
  • 8 Nonaka I, Sunohara N, Ishiura S. et al Familial distal myopathy with rimmed vacuole and lamellar (myeloid) body formation. J Neurol Sci 1981; 51: 141-155.
  • 9 Bolduc V, Marlow G, Boycott KM. et al Recessive mutations in the putative calcium-activated chloride channel Anoctamin 5 cause proximal LGMD2L and distal MMD3 muscular dystrophies. Am J Hum Genet 2010; 86: 213-221
  • 10 Linssen WH, de Visser M, Notermans NC. et al Genetic heterogeneity in Miyoshi-type distal muscular dystrophy. Neuromuscul Disord 1998; 8: 317-320.
  • 11 Liu J, Aoki M, Illa I. et al Dysferlin, a novel skeletal muscle gene, is mutated in Miyoshi myopathy and limb girdle muscular dystrophy. Nat Genet 1998; 20: 31-36.
  • 12 Kraya T, Zierz S. Distal myopathies: from clinical classification to molecular understanding. J Neural Transm (Vienna) 2013; 120 (Suppl. 01) S3-7
  • 13 Udd B. Distal myopathies. Handb Clin Neurol 2007; 86: 215-241.
  • 14 Flachenecker P, Kiefer R, Naumann M. et al Distal muscular dystrophy of Miyoshi type. Report of two cases and review of the Literature. J Neurol 1997; 244: 23-29.
  • 15 Mastaglia FL, Laing NG. Distal myopathies: clinical and molecular diagnosis and classification. J Neurol Neurosurg Psychiatry 1999; 67: 703-707.
  • 16 Udd B. Distal myopathies – new genetic entities expand diagnostic challenge. Neuromuscul Disord 2012; 22: 5-12.
  • 17 Hedberg-Oldfors C, Mensch A, Visuttijai K. et al Polyglucosan myopathy and functional characterization of a novel GYG1 mutation. Acta Neurol Scand 2018; 137: 308-315.
  • 18 Feit H, Silbergleit A, Schneider LB. et al Vocal cord and pharyngeal weakness with autosomal dominant distal myopathy: clinical description and gene localization to 5q31. Am J Hum Genet 1998; 63: 1732-1742.
  • 19 Barp A, Malfatti E, Metay C. et al. The first French case of MATR3-related distal myopathy: Clinical, radiological and histopathological characterization. Rev Neurol (Paris) 2018 doi:10.1016/j.neurol.2017.08.004.
  • 20 Muller TJ, Kraya T, Stoltenburg-Didinger G. et al Phenotype of matrin-3-related distal myopathy in 16 German patients. Ann Neurol 2014; 76: 669-680
  • 21 Palmio J, Evila A, Bashir A. et al Re-evaluation of the phenotype caused by the common MATR3 p.Ser85Cys mutation in a new family. J Neurol Neurosurg Psychiatry 2016; 87: 448-450.
  • 22 Yamashita S, Mori A, Nishida Y. et al Clinicopathological features of the first Asian family having vocal cord and pharyngeal weakness with distal myopathy due to a MATR3 mutation. Neuropathol Appl Neurobiol 2015; 41: 391-398.
  • 23 Kraya T, Schmidt B, Muller T. et al Impairment of respiratory function in late-onset distal myopathy due to MATR3 Mutation. Muscle Nerve 2015; 51: 916-918.
  • 24 Mensch A, Meinhardt B, Bley N. et al The p.S85C-mutation in MATR3 impairs stress granule formation in Matrin-3 myopathy. Exp Neurol 2018; 306: 222-231.
  • 25 Johnson JO, Pioro EP, Boehringer A. et al Mutations in the Matrin 3 gene cause familial amyotrophic lateral sclerosis. Nat Neurosci 2014; 17: 664-666.
  • 26 Griggs R, Vihola A, Hackman P. et al Zaspopathy in a large classic late-onset distal myopathy family. Brain 2007; 130: 1477-1484.
  • 27 Strach K, Reimann J, Thomas D. et al ZASPopathy with childhood-onset distal myopathy. J Neurol 2012; 259: 1494-1496.
  • 28 Griggs RC, Udd BA. Markesbery disease: autosomal dominant late-onset distal myopathy: from phenotype to ZASP gene identification. Neuromolecular Med 2011; 13: 27-30.
  • 29 Kraya T, Kress W, Stoevesant D. et al [Myofibrillary myopathy due to the ZASP mutation Ala147Thr : two cases with exclusively distal leg involvement]. Nervenarzt 2013; 84: 209-213.
  • 30 Selcen D, Engel AG. Mutations in ZASP define a novel form of muscular dystrophy in humans. Ann Neurol 2005; 57: 269-276.
  • 31 Horowitz SH, Schmalbruch H. Autosomal dominant distal myopathy with desmin storage: a clinicopathologic and electrophysiologic study of a large kinship. Muscle Nerve 1994; 17: 151-160.
  • 32 Lobrinus JA, Janzer RC, Kuntzer T. et al Familial cardiomyopathy and distal myopathy with abnormal desmin accumulation and migration. Neuromuscul Disord 1998; 8: 77-86.
  • 33 Udd B. Distal muscular dystrophies. Handb Clin Neurol 2011; 101: 239-262.
  • 34 Dalakas MC, Park KY, Semino-Mora C. et al Desmin myopathy, a skeletal myopathy with cardiomyopathy caused by mutations in the desmin gene. N Engl J Med 2000; 342: 770-780.
  • 35 Sjoberg G, Saavedra-Matiz CA, Rosen DR. et al A missense mutation in the desmin rod domain is associated with autosomal dominant distal myopathy, and exerts a dominant negative effect on filament formation. Hum Mol Genet 1999; 8: 2191-2198.
  • 36 Walter MC, Reilich P, Huebner A. et al Scapuloperoneal syndrome type Kaeser and a wide phenotypic spectrum of adult-onset, dominant myopathies are associated with the desmin mutation R350P. Brain 2007; 130: 1485-1496.
  • 37 Illarioshkin SN, Ivanova-Smolenskaya IA, Tanaka H. et al Clinical and molecular analysis of a large family with three distinct phenotypes of progressive muscular dystrophy. Brain 1996; 119 (Pt 6) 1895-1909.
  • 38 Kesper K, Kornblum C, Reimann J. et al Pattern of skeletal muscle involvement in primary dysferlinopathies: a whole-body 3.0-T magnetic resonance imaging study. Acta Neurol Scand 2009; 120: 111-118.
  • 39 Rowin J, Meriggioli MN, Cochran EJ. et al Prominent inflammatory changes on muscle biopsy in patients with Miyoshi myopathy. Neuromuscul Disord 1999; 9: 417-420.
  • 40 Scalco RS, Lorenzoni PJ, Lynch DS. et al Polymyositis without Beneficial Response to Steroid Therapy: Should Miyoshi Myopathy be a Differential Diagnosis?. Am J Case Rep 2017; 18: 17-21.
  • 41 Linssen WH, de Voogt WG, Krahn M. et al Long-term follow-up study on patients with Miyoshi phenotype of distal muscular dystrophy. Eur J Neurol 2013; 20: 968-974.
  • 42 Schessl J, Kress W, Schoser B. Novel ANO5 mutations causing hyper-CK-emia, limb girdle muscular weakness and Miyoshi type of muscular dystrophy. Muscle Nerve 2012; 45: 740-742.
  • 43 Penttila S, Palmio J, Suominen T. et al Eight new mutations and the expanding phenotype variability in muscular dystrophy caused by ANO5. Neurology 2012; 78: 897-903.
  • 44 Deschauer M, Joshi PR, Glaser D. et al [Muscular dystrophy due to mutations in anoctamin 5: clinical and molecular genetic findings.]. Nervenarzt 2011; 82: 1596-1603.
  • 45 Reiners K. Elektromyografische Untersuchung bei Myopathien. Aktuelle Neurologie 2009; 36: 227-233.
  • 46 Hanisch F, Kronenberger C, Zierz S. et al The significance of pathological spontaneous activity in various myopathies. Clin Neurophysiol 2014; 125: 1485-1490.
  • 47 Bugiardini E, Morrow JM, Shah S. et al The Diagnostic Value of MRI Pattern Recognition in Distal Myopathies. Front Neurol 2018; 9: 456
  • 48 Leung DG. Magnetic resonance imaging patterns of muscle involvement in genetic muscle diseases: a systematic review. J Neurol 2017; 264: 1320-1333.