Int J Sports Med 2019; 40(07): 440-446
DOI: 10.1055/a-0884-3014
Physiology & Biochemistry
© Georg Thieme Verlag KG Stuttgart · New York

Relationship of Activity Patterns to Acute Mountain Sickness in South Pole Workers

Girish Pathangey
1   Mayo Clinic Arizona, Cardiovascular Diseases, Scottsdale, United States
,
Courtney M. Wheatley-Guy
1   Mayo Clinic Arizona, Cardiovascular Diseases, Scottsdale, United States
,
Glenn Stewart
2   Mayo Clinic, Division of Cardiovascular Diseases, Rochester MN, United States
,
Paul J. Anderson
2   Mayo Clinic, Division of Cardiovascular Diseases, Rochester MN, United States
3   HealthPartners West Clinic, Occupational Medicine, Saint Louis Park, United States
,
Maile L. Ceridon Richert
2   Mayo Clinic, Division of Cardiovascular Diseases, Rochester MN, United States
,
Andrew D. Miller
2   Mayo Clinic, Division of Cardiovascular Diseases, Rochester MN, United States
,
Jacob B. Johnson
2   Mayo Clinic, Division of Cardiovascular Diseases, Rochester MN, United States
,
Bruce Johnson
2   Mayo Clinic, Division of Cardiovascular Diseases, Rochester MN, United States
› Author Affiliations
Further Information

Publication History



accepted 19 March 2019

Publication Date:
12 June 2019 (online)

Abstract

This study aimed to evaluate the influence of physical activity on incidence of acute mountain sickness (AMS) by continuous activity monitoring in a free-living sample of South Pole workers over the initial 72 h at altitude exposure of 2,840 m (9,318 ft). Body Media activity monitors were worn by 47 healthy participants. AMS was defined by the Lake Louise symptom questionnaire. Venous blood samples were taken at sea level and approximately 48 h after high altitude exposure. AMS incidence was 34% (n=16/47) over the first 48 h and 40% (n=19/47) over 72 h. On day 2 at high altitude, individuals with AMS demonstrated a significantly greater increase in the percent change in physical activity metrics from baseline: total energy expenditure 19±13 vs. 5±7%, total steps 65±51 vs. 10±18%, metabolic equivalent of tasks 21±13 vs. 7±13%, and time spent performing moderate to vigorous physical activity 114±79 vs. 26±27% for individuals with AMS vs. no AMS, respectively, p<0.05. In addition, erythropoietin and vascular endothelial growth factor were 1.69 and 1.75 times higher, respectively, in those with AMS. In conclusion, workers who engaged in increased physical activity and activity intensity during initial exposure to the South Pole were more susceptible to developing AMS.

Supplementary Material

 
  • References

  • 1 Bartsch P, Swenson ER. Clinical practice: Acute high-altitude illnesses. N Engl J Med 2013; 368: 2294-2302
  • 2 Bhutia M, Goyal K, Rai A, Kedia S, Kumar N, Mitra R. High altitude cerebral edema with a fatal outcome within 24 h of its onset: Shall acclimatization be made compulsory?. Saudi J Anaesth 2013; 7: 488-489
  • 3 Taylor AT. High-altitude illnesses: Physiology, risk factors. prevention, and treatment. Rambam Maimonides Med J 2011; 2: e0022
  • 4 Roach RC, Bartsch P, Oelz O, Hackett PH. The Lake Louise acute mountain sickness scoring system. In: Sutton JR, Houston CS, Coates G (eds.). Hypoxia and Molecular Medicine. Burlington, VT: Queens City Press; 1993: 272-274
  • 5 Hackett PH, Rennie D, Levine HD. The incidence, importance, and prophylaxis of acute mountain sickness. Lancet 1976; 2: 1149-1155
  • 6 Mellor AJ, Woods DR, O'Hara J, Howley M, Watchorn J, Boos C. Rating of perceived exertion and acute mountain sickness during a high-altitude trek. Aviat Space Environ Med 2014; 85: 1214-1216
  • 7 Mairer K, Wille M, Grander W, Burtscher M. Effects of exercise and hypoxia on heart rate variability and acute mountain sickness. Int J Sports Med 2013; 34: 700-706
  • 8 Roach RC, Maes D, Sandoval D, Robergs RA, Icenogle M, Hinghofer-Szalkay H, Lium D, Loeppky JA. Exercise exacerbates acute mountain sickness at simulated high altitude. J Appl Physiol 2000; 88: 581-585
  • 9 Alizadeh R, Ziaee V, Frooghifard LA, Mansournia MA, Aghsaeifard Z. The effect of path and beginning time of ascending on incidence of acute mountain sickness around mount damavand in Iran (5671 m). Neurol Res Int 2012; 2012: 428296
  • 10 Rupp T, Jubeau M, Lamalle L, Warnking JM, Millet GY, Wuyam B, Esteve F, Levy P, Krainik A, Verges S. Cerebral volumetric changes induced by prolonged hypoxic exposure and whole-body exercise. J Cereb Blood Flow Metab 2014; 34: 1802-1809
  • 11 Rupp T, Jubeau M, Millet GY, Perrey S, Esteve F, Wuyam B, Levy P, Verges S. The effect of hypoxemia and exercise on acute mountain sickness symptoms. J Appl Physiol 2013; 114: 180-185
  • 12 Schommer K, Hammer M, Hotz L, Menold E, Bartsch P, Berger MM. Exercise intensity typical of mountain climbing does not exacerbate acute mountain sickness in normobaric hypoxia. J Appl Physiol 2012; 113: 1068-1074
  • 13 Edsell ME, Wimalasena YH, Malein WL, Ashdown KM, Gallagher CA, Imray CH, Wright AD, Myers SD. High-intensity intermittent exercise increases pulmonary interstitial edema at altitude but not at simulated altitude. Wilderness Environ Med 2014; 25: 409-415
  • 14 Loeppky JA, Roach RC, Maes D, Hinghofer-Szalkay H, Roessler A, Gates L, Fletcher ER, Icenogle MV. Role of hypobaria in fluid balance response to hypoxia. High Alt Med Biol 2005; 6: 60-71
  • 15 Harriss DJ, Macsween A, Atkinson G. Standards for ethics in sport and exercise science research: 2018 Update. Int J Sports Med 2017; 38: 1126-1131
  • 16 Anderson PJ, Miller AD, O'Malley KA, Ceridon ML, Beck KC, Wood CM, Wiste HJ, Mueller JJ, Johnson JB, Johnson BD. Incidence and symptoms of high altitude illness in south pole workers: Antarctic Study of Altitude Physiology (ASAP). Clin Med Insights Circ Respir Pulm Med 2011; 5: 27-35
  • 17 Anderson PJ, Wiste HJ, Ostby SA, Miller AD, Ceridon ML, Johnson BD. Sleep disordered breathing and acute mountain sickness in workers rapidly transported to the South Pole (2835 m). Respir Physiol Neurobiol 2015; 210: 38-43
  • 18 Harrison MF, Anderson P, Miller A, O'Malley K, Richert M, Johnson J, Johnson BD. Physiological variables associated with the development of acute mountain sickness at the South Pole. BMJ Open 2013; 3: e003064
  • 19 Herman NGD, Anderson P, Miller A, Johnson J, O'Malley K, Ceridon Richert M, Johnson B. Peripheral blood mononuclear cell gene expression in healthy adults rapidly transported to high altitude. Adv Genomics Genet 2015; 5: 1-9
  • 20 Lalande S, Anderson PJ, Miller AD, Ceridon ML, Beck KC, O'Malley KA, Johnson JB, Johnson BD. Variability in pulmonary function following rapid altitude ascent to the Amundsen-Scott South Pole station. Eur J Appl Physiol 2011; 111: 2221-2228
  • 21 Johannsen DL, Calabro MA, Stewart J, Franke W, Rood JC, Welk GJ. Accuracy of armband monitors for measuring daily energy expenditure in healthy adults. Med Sci Sports Exerc 2010; 42: 2134-2140
  • 22 Mignault D, St-Onge M, Karelis AD, Allison DB, Rabasa-Lhoret R. Evaluation of the Portable HealthWear Armband: A device to measure total daily energy expenditure in free-living type 2 diabetic individuals. Diabetes Care 2005; 28: 225-227
  • 23 Gad SA, Martin S, Kimber S, Williams R, Gulamhusein S, Lockwood E, Haennel RG. Impact of cardiac resynchronization therapy on daily physical activity in heart failure patients. J Cardiopulm Rehabil Prev 2018; 38: E1-E4
  • 24 Miller AD, Taylor BJ, Johnson BD. Energy expenditure and intensity levels during a 6170-m summit in the Karakoram Mountains. Wilderness Environ Med 2013; 24: 337-344
  • 25 Schwarzfischer P, Gruszfeld D, Socha P, Luque V, Closa-Monasterolo R, Rousseaux D, Moretti M, Mariani B, Verduci E, Koletzko B, Grote V. Longitudinal analysis of physical activity, sedentary behaviour and anthropometric measures from ages 6 to 11 years. Int J Behav Nutr Phys Act 2018; 15: 126
  • 26 Thyregod M, Lokke A, Bodtger U. The impact of pulmonary rehabilitation on severe physical inactivity in patients with chronic obstructive pulmonary disease: A pilot study. Int J Chron Obstruct Pulmon Dis 2018; 13: 3359-3365
  • 27 Bloch J, Duplain H, Rimoldi SF, Stuber T, Kriemler S, Allemann Y, Sartori C, Scherrer U. Prevalence and time course of acute mountain sickness in older children and adolescents after rapid ascent to 3450 meters. Pediatrics 2009; 123: 1-5
  • 28 Honigman B, Theis MK, Koziol-McLain J, Roach R, Yip R, Houston C, Moore LG, Pearce P. Acute mountain sickness in a general tourist population at moderate altitudes. Ann Intern Med 1993; 118: 587-592
  • 29 Turner J. Antarctic climate. In North G, Pyle J, Zhang F. (eds.). Encyclopedia of Atmospheric Sciences. 2nd Edition Elsevier Ltd; 2015: 98-106
  • 30 Reeves JT, Wagner J, Zafren K, Honigman B, Schoene RB. Seasonal variation in barometric pressure and temperature in summit county: Effect on altitude medicine. In: Sutton JRCG, Houston CS (eds.). Hypoxia and Molecular Medicine. Burlington, Vermont: Queen City: Press; 1993: 275-281
  • 31 Dallimore J, Foley JA, Valentine P. Background rates of acute mountain sickness-like symptoms at low altitude in adolescents using Lake Louise score. Wilderness Environ Med 2012; 23: 11-14
  • 32 Dickinson JG. Acetazolamide in acute mountain sickness. Br Med J (Clin Res Ed) 1987; 295: 1161-1162
  • 33 Williamson J, Oakeshott P, Dallimore J. Altitude sickness and acetazolamide. BMJ 2018; 361: k2153
  • 34 Xu XQ, Jing ZC. High-altitude pulmonary hypertension. Eur Respir Rev 2009; 18: 13-17
  • 35 Wadhwaniya S, Hyder AA. Pre-travel consultation without injury prevention is incomplete. J Travel Med 2013; 20: 217-220
  • 36 Woods DR, Davison A, Stacey M, Smith C, Hooper T, Neely D, Turner S, Peaston R, Mellor A. The cortisol response to hypobaric hypoxia at rest and post-exercise. Horm Metab Res 2012; 44: 302-305
  • 37 DiPasquale DM, Strangman GE, Harris NS, Muza SR. Acute mountain sickness, hypoxia, hypobaria and exercise duration each affect heart rate. Int J Sports Med 2015; 36: 609-614
  • 38 Roach RC, Loeppky JA, Icenogle MV. Acute mountain sickness: Increased severity during simulated altitude compared with normobaric hypoxia. J Appl Physiol 1996; 81: 1908-1910
  • 39 Self DA, Mandella JG, Prinzo OV, Forster EM, Shaffstall RM. Physiological equivalence of normobaric and hypobaric exposures of humans to 25,000 feet (7620 m). Aviat Space Environ Med 2011; 82: 97-103
  • 40 Debevec T, Pialoux V, Mekjavic IB, Eiken O, Mury P, Millet GP. Moderate exercise blunts oxidative stress induced by normobaric hypoxic confinement. Med Sci Sports Exerc 2014; 46: 33-41
  • 41 Baker JM, Parise G. Skeletal muscle erythropoietin expression is responsive to hypoxia and exercise. Med Sci Sports Exerc 2016; 48: 1294-1301
  • 42 Burki NK, Tetenta SU. Inflammatory response to acute hypoxia in humans. Pulm Pharmacol Ther 2014; 27: 208-211
  • 43 Sahinarslan A, Yalcin R, Kocaman SA, Ercin U, Tanalp AC, Topal S, Bukan N, Boyaci B, Cengel A. The relationship of serum erythropoietin level with coronary collateral grade. Can J Cardiol 2011; 27: 589-595
  • 44 Roach RC, Hackett PH, Oelz O, Bartsch P, Luks AM, MacInnis MJ, Baillie JK. The 2018 Lake Louise Acute Mountain Sickness Score. High Alt Med Biol 2018; 19: 4-6