CC BY-NC-ND 4.0 · Geburtshilfe Frauenheilkd 2019; 79(06): 626-634
DOI: 10.1055/a-0887-7313
GebFra Science
Original Article
Georg Thieme Verlag KG Stuttgart · New York

Role of Renin-Angiotensin-System in Human Breast Cancer Cells: Is There a Difference in Regulation of Angiogenesis between Hormone-Receptor Positive and Negative Breast Cancer Cells?

Bedeutung des Renin-Angiotensin-Systems in humanen Mammakarzinomzellen: Gibt es einen Unterschied zwischen hormonrezeptorpositiven und -negativen Mammakarzinomzellen bei der Regulation von Angiogenese?
Daniel Herr
1   Department of Obstetrics and Gynaecology, Würzburg University Medical Centre, Würzburg, Germany
,
Christof Sauer
2   Department of Obstetrics and Gynaecology, Ulm University Medical Centre, Ulm, Germany
,
Iris Holzheu
2   Department of Obstetrics and Gynaecology, Ulm University Medical Centre, Ulm, Germany
,
Regina Sauter
2   Department of Obstetrics and Gynaecology, Ulm University Medical Centre, Ulm, Germany
,
Wolfgang Janni
2   Department of Obstetrics and Gynaecology, Ulm University Medical Centre, Ulm, Germany
,
Achim Wöckel
1   Department of Obstetrics and Gynaecology, Würzburg University Medical Centre, Würzburg, Germany
,
Christine Wulff
1   Department of Obstetrics and Gynaecology, Würzburg University Medical Centre, Würzburg, Germany
› Institutsangaben
Weitere Informationen

Publikationsverlauf

received 06. Februar 2019
revised 02. April 2019

accepted 02. April 2019

Publikationsdatum:
14. Juni 2019 (online)

Abstract

Objective This study examined the role of the RAS in human breast cancer cells to question if there are differences between HR-positive and HR-negative cells with regard to regulation of VEGF.

Methods Expression of different RAS components in hormone receptor (HR)-positive and HR-negative breast cancer cells was investigated using RT-PCR. Different stimulation protocols with different RAS inhibitors were used to investigate the effect on VEGF expression. Angiotensin II-dependent expression of VEGF was quantified by real time PCR. In addition, the effect of intrinsic RAS was studied performing siRNA knockdown of angiotensinogen (AGT). Statistical analysis were calculated using IBM SPSS Statistics Version 21.

Results Expression of AT1R, AT2R, AGT and ACE was shown in HR-positive and HR-negative breast cancer cell lines. Extrinsic stimulation with angiotensin II increased VEGF significantly. After treatment with captopril or AT1R-inhibitor candesartan, VEGF-expression decreased significantly in HR-positive and HR-negative cell lines. However, inhibition of AT2R using PD 123,319 did not show any significant changes of VEGF. After prevention of intrinsic angiotensin II, extrinsic angiotensin II as well as the combination with inhibitors of the receptors caused a significant reduction of VEGF. Surprisingly, the overall effect of the RAS after knockdown of AGT revealed a significant increase of VEGF in HR-positive cells at any time while a significant decrease was observed in HR-negative cells after 144 hours incubation.

Conclusion The RAS-dependent regulation of VEGF between HR-positive and HR-negative breast cancer cells seems do be different. These findings provide evidence for a possible future therapeutic strategy.

Zusammenfassung

Zielsetzung Im Rahmen dieser Studie wurde die Bedeutung des RAS für die Regulation von VEGF in humanen Mammakarzinomzellen im Hinblick auf mögliche Unterscheide zwischen HR-positiven und HR-negativen Zellen untersucht.

Methoden Die Expression verschiedener Komponenten des RAS wurde in hormonrezeptorpositiven und -negativen Mammakarzinom-Zelllinien durch RT-PCR nachgewiesen und die Angiotensin-II-abhängige Expression von VEGF mittels Real-Time-PCR quantifiziert. Außerdem wurde die Wirkung von intrinsischem Angiotensin II durch siRNA-Knockdown von AGT ausgeschaltet. Die Statistik wurde mittels IBM SPSS Statistics Version 21 berechnet.

Ergebnisse Die Expression von AT1R, AT2R, AGT und ACE wurde in hormonrezeptorpositiven und -negativen Mammakarzinomzellen gezeigt. Extrinsische Stimulation mit Angiotensin II erhöhte dabei die VEGF-Expression signifikant. Im Gegensatz dazu war letztere nach Behandlung mit Captopril oder dem AT1R-Inhibitor Candesartan in HR-positiven und -negativen Zellen signifikant reduziert. Dagegen führte die Blockade des AT2R mit PD 123,319 zu keiner signifikanten Veränderung von VEGF. Nach Ausschalten von intrinsischem Angiotensin II wurde VEGF durch extrinsisches Angiotensin II oder durch die Kombination mit den Inhibitoren der Rezeptoren signifikant verringert. Überaschenderweise zeigte sich als Nettoeffekt des RAS nach Ausschalten von AGT eine signifikante Zunahme von VEGF in HR-positiven Zellen zu allen Zeitpunkten. Dagegen war in den HR-negativen Zellen eine Abnahme von VEGF nur nach 144 Stunden zu beobachten.

Schlussfolgerung Die RAS-abhängige Regulation von VEGF scheint zwischen hormonrezeptorpositiven und -negativen Mammakarzinomzellen unterschiedlich zu sein. Diese Ergebnisse könnten auf eine mögliche zukünftige therapeutische Option hinweisen.

 
  • References

  • 1 Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1995; 1: 27-31
  • 2 Grundker C, Lasche M, Hellinger JW. et al. Mechanisms of Metastasis and Cell Mobility – The Role of Metabolism. Geburtsh Frauenheilk 2019; 79: 184-188
  • 3 Senchukova MA, Nikitenko NV, Tomchuk ON. et al. Different types of tumor vessels in breast cancer: morphology and clinical value. Springerplus 2015; 4: 512
  • 4 Flamme I, Frolich T, Risau W. Molecular mechanisms of vasculogenesis and embryonic angiogenesis. J Cell Physiol 1997; 173: 206-210
  • 5 Risau W. Mechanisms of angiogenesis. Nature 1997; 386: 671-674
  • 6 Zhang L, Hannay JA, Liu J. et al. Vascular endothelial growth factor overexpression by soft tissue sarcoma cells: implications for tumor growth, metastasis, and chemoresistance. Cancer Res 2006; 66: 8770-8778
  • 7 Cao Y. Tumor angiogenesis and therapy. Biomed Pharmacother 2005; 59 (Suppl. 02) S340-S343
  • 8 Wulff C, Wiegand SJ, Saunders PT. et al. Angiogenesis during follicular development in the primate and its inhibition by treatment with truncated Flt-1-Fc (vascular endothelial growth factor Trap(A40)). Endocrinology 2001; 142: 3244-3254
  • 9 Wulff C, Wilson H, Wiegand SJ. et al. Prevention of thecal angiogenesis, antral follicular growth, and ovulation in the primate by treatment with vascular endothelial growth factor Trap R1R2. Endocrinology 2002; 143: 2797-2807
  • 10 Bernard-Marty C, Lebrun F, Awada A. et al. Monoclonal antibody-based targeted therapy in breast cancer: current status and future directions. Drugs 2006; 66: 1577-1591
  • 11 Klagsbrun M, DʼAmore PA. Vascular endothelial growth factor and its receptors. Cytokine Growth Factor Rev 1996; 7: 259-270
  • 12 Sparks MA, Crowley SD, Gurley SB. et al. Classical Renin-Angiotensin system in kidney physiology. Compr Physiol 2014; 4: 1201-1228
  • 13 Crowley SD, Gurley SB, Coffman TM. AT(1) receptors and control of blood pressure: the kidney and more. Trends Cardiovasc Med 2007; 17: 30-34
  • 14 Timmermans PB, Chiu AT, Herblin WF. et al. Angiotensin II receptor subtypes. Am J Hypertens 1992; 5 (6 Pt 1): 406-410
  • 15 Egami K, Murohara T, Shimada T. et al. Role of host angiotensin II type 1 receptor in tumor angiogenesis and growth. J Clin Invest 2003; 112: 67-75
  • 16 De Paepe B, Verstraeten VL, De Potter CR. et al. Growth stimulatory angiotensin II type-1 receptor is upregulated in breast hyperplasia and in situ carcinoma but not in invasive carcinoma. Histochem Cell Biol 2001; 116: 247-254
  • 17 Goto M, Mukoyama M, Sugawara A. et al. Expression and role of angiotensin II type 2 receptor in the kidney and mesangial cells of spontaneously hypertensive rats. Hypertens Res 2002; 25: 125-133
  • 18 Silvestre JS, Tamarat R, Senbonmatsu T. et al. Antiangiogenic effect of angiotensin II type 2 receptor in ischemia-induced angiogenesis in mice hindlimb. Circ Res 2002; 90: 1072-1079
  • 19 Ahmad S, Simmons T, Varagic J. et al. Chymase-dependent generation of angiotensin II from angiotensin-(1-12) in human atrial tissue. PLoS One 2011; 6: e28501
  • 20 Prosser HC, Forster ME, Richards AM. et al. Cardiac chymase converts rat proAngiotensin-12 (PA12) to angiotensin II: effects of PA12 upon cardiac haemodynamics. Cardiovasc Res 2009; 82: 40-50
  • 21 Nagata S, Kato J, Sasaki K. et al. Isolation and identification of proangiotensin-12, a possible component of the renin-angiotensin system. Biochem Biophys Res Commun 2006; 350: 1026-1031
  • 22 Donoghue M, Hsieh F, Baronas E. et al. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ Res 2000; 87: E1-E9
  • 23 Nie W, Yan H, Li S. et al. Angiotensin-(1-7) enhances angiotensin II induced phosphorylation of ERK1/2 in mouse bone marrow-derived dendritic cells. Mol Immunol 2009; 46: 355-361
  • 24 Tallant EA, Clark MA. Molecular mechanisms of inhibition of vascular growth by angiotensin-(1-7). Hypertension 2003; 42: 574-579
  • 25 Machado RD, Santos RA, Andrade SP. Opposing actions of angiotensins on angiogenesis. Life Sci 2000; 66: 67-76
  • 26 Gallagher PE, Ferrario CM, Tallant EA. Regulation of ACE2 in cardiac myocytes and fibroblasts. Am J Physiol Heart Circ Physiol 2008; 295: H2373-H2379
  • 27 Regulska K, Stanisz B, Regulski M. The renin-angiotensin system as a target of novel anticancer therapy. Curr Pharm Des 2013; 19: 7103-7125
  • 28 Deshayes F, Nahmias C. Angiotensin receptors: a new role in cancer?. Trends Endocrinol Metab 2005; 16: 293-299
  • 29 Rhodes DR, Ateeq B, Cao Q. et al. AGTR1 overexpression defines a subset of breast cancer and confers sensitivity to losartan, an AGTR1 antagonist. Proc Natl Acad Sci U S A 2009; 106: 10284-10289
  • 30 Louis SN, Wang L, Chow L. et al. Appearance of angiotensin II expression in non-basal epithelial cells is an early feature of malignant change in human prostate. Cancer Detect Prev 2007; 31: 391-395
  • 31 Jethon A, Pula B, Piotrowska A. et al. Angiotensin II type 1 receptor (AT-1R) expression correlates with VEGF-A and VEGF-D expression in invasive ductal breast cancer. Pathol Oncol Res 2012; 18: 867-873
  • 32 Herr D, Rodewald M, Fraser HM. et al. Regulation of endothelial proliferation by the renin-angiotensin system in human umbilical vein endothelial cells. Reproduction 2008; 136: 125-130
  • 33 Herr D, Rodewald M, Fraser HM. et al. Potential role of Renin-Angiotensin-system for tumor angiogenesis in receptor negative breast cancer. Gynecol Oncol 2008; 109: 418-425
  • 34 Koh WP, Yuan JM, Sun CL. et al. Angiotensin I-converting enzyme (ACE) gene polymorphism and breast cancer risk among Chinese women in Singapore. Cancer Res 2003; 63: 573-578
  • 35 Gonzalez-Zuloeta Ladd AM, Arias Vasquez A, Sayed-Tabatabaei FA. et al. Angiotensin-converting enzyme gene insertion/deletion polymorphism and breast cancer risk. Cancer Epidemiol Biomarkers Prev 2005; 14: 2143-2146
  • 36 Ager EI, Chong WW, Wen SW. et al. Targeting the angiotensin II type 2 receptor (AT2R) in colorectal liver metastases. Cancer Cell Int 2010; 10: 19
  • 37 Mateos L, Perez-Alvarez MJ, Wandosell F. Angiotensin II type-2 receptor stimulation induces neuronal VEGF synthesis after cerebral ischemia. Biochim Biophys Acta 2016; 1862: 1297-1308
  • 38 Ptasinska-Wnuk D, Lawnicka H, Fryczak J. et al. Angiotensin peptides regulate angiogenic activity in rat anterior pituitary tumour cell cultures. Endokrynol Pol 2007; 58: 478-486
  • 39 Zhou L, Luo Y, Sato S. et al. Role of two types of angiotensin II receptors in colorectal carcinoma progression. Pathobiology 2014; 81: 169-175
  • 40 Clere N, Corre I, Faure S. et al. Deficiency or blockade of angiotensin II type 2 receptor delays tumorigenesis by inhibiting malignant cell proliferation and angiogenesis. Int J Cancer 2010; 127: 2279-2291
  • 41 Muramatsu M, Katada J, Hayashi I. et al. Chymase as a proangiogenic factor. A possible involvement of chymase-angiotensin-dependent pathway in the hamster sponge angiogenesis model. J Biol Chem 2000; 275: 5545-5552
  • 42 Froogh G, Pinto JT, Le Y. et al. Chymase-dependent production of angiotensin II: an old enzyme in old hearts. Am J Physiol Heart Circ Physiol 2017; 312: H223-H231
  • 43 Suganuma T, Ino K, Shibata K. et al. Functional expression of the angiotensin II type 1 receptor in human ovarian carcinoma cells and its blockade therapy resulting in suppression of tumor invasion, angiogenesis, and peritoneal dissemination. Clin Cancer Res 2005; 11: 2686-2694
  • 44 Miyajima A, Kikuchi E, Kosaka T. et al. Angiotensin II Type 1 Receptor Antagonist as an Angiogenic Inhibitor in Urogenital Cancer. Rev Recent Clin Trials 2009; 4: 75-78
  • 45 Noguchi R, Yoshiji H, Ikenaka Y. et al. Synergistic inhibitory effect of gemcitabine and angiotensin type-1 receptor blocker, losartan, on murine pancreatic tumor growth via anti-angiogenic activities. Oncol Rep 2009; 22: 355-360
  • 46 Pei N, Wan R, Chen X. et al. Angiotensin-(1-7) Decreases Cell Growth and Angiogenesis of Human Nasopharyngeal Carcinoma Xenografts. Mol Cancer Ther 2016; 15: 37-47
  • 47 Menon J, Soto-Pantoja DR, Callahan MF. et al. Angiotensin-(1-7) inhibits growth of human lung adenocarcinoma xenografts in nude mice through a reduction in cyclooxygenase-2. Cancer Res 2007; 67: 2809-2815
  • 48 Soto-Pantoja DR, Menon J, Gallagher PE. et al. Angiotensin-(1-7) inhibits tumor angiogenesis in human lung cancer xenografts with a reduction in vascular endothelial growth factor. Mol Cancer Ther 2009; 8: 1676-1683