Subscribe to RSS
DOI: 10.1055/a-0894-4880
Myostatin als potenzieller Marker für das Kompartmentsyndrom bei elektrischen Verletzungen
Elevation of Myostatin as a Potential Marker for Compartment Syndrome in Electrical InjuriesZusammenfassung
Einleitung Elektrische Unfälle und insbesondere daraus resultierende Kompartmentsyndrome sind herausfordernde Verletzungen in der klinischen Behandlung. Kreatinkinase (CK) und Myoglobin sind bekannte Laborparameter zur Bestimmung eines Kompartmentsyndroms.
Methoden Wir haben Patienten mit elektrischen Verletzungen zwischen 2006 und 2016 in unserer Verbrennungsklinik untersucht. Wir wollten die Rolle von Myostatin als Marker für das Kompartmentsyndrom durch Serummessungen innerhalb von 24 h nach der Verletzung analysieren.
Ergebnisse Wir haben Daten von 24 Patienten erhoben, die mit einer elektrischen Hochspannungsverletzung stationär behandelt wurden. Von diesen 24 Patienten konnten wir bei 14 Patienten Myostatinkonzentrationen messen. Während CK-MB (Kreatinkinase Typ Muscle-Brain [MB]) keine signifikante Korrelation mit einem Kompartmentsyndrom zeigte, zeigten CK und Myostatin einen stark signifikanten Anstieg. Interessanterweise war Myostatin bei elektrischen Verletzungen signifikant erhöht, jedoch nicht bei Verbrennungen, während CK keinen signifikanten Unterschied zeigte.
Schlussfolgerung Neben CK kann Myostatin somit als zuverlässiger Frühmarker für das Kompartmentsyndrom bei elektrischen Verletzungen dienen.
Abstract
Introduction Electrical accidents and particularly subsequent compartment syndromes are challenging injuries for clinical treatment. Creatinine kinase (CK) and myoglobin are known lab parameters to detect a compartment syndrome.
Methods We followed up patients with electrical injuries between the years 2006 and 2016 at our burn unit. We aimed to analyse the role of myostatin as marker for compartment syndrome through serum measurements within 48 hours after injury.
Results We collected data from 24 patients hospitalised with high-voltage electrical injury. All patients were male. We measured myostatin in 14 of these patients. While CK-MB (creatinine kinase muscle-brain type [MB]) showed no significant correlation to compartment syndrome, CK and myostatin gave highly significant increases. Interestingly, myostatin was significantly increased in electrical injuries but not burn injuries, while CK did not show a significant difference.
Conclusion Thus, besides CK, myostatin can serve as reliable early marker for compartment syndrome in electrical injuries.
Publication History
Article published online:
30 July 2019
© 2019. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Handschin AE, Jung FJ, Guggenheim M. et al. [Surgical treatment of high-voltage electrical injuries]. Handchir Mikrochir Plast Chir 2007; 39: 345-349 Im Internet: http://www.ncbi.nlm.nih.gov/pubmed/17985279
- 2 Rosen CL, Adler JN, Rabban JT. et al. Early predictors of myoglobinuria and acute renal failure following electrical injury. J Emerg Med 1999; 17: 783-789 http://www.ncbi.nlm.nih.gov/pubmed/10499690
- 3 Kenney K, Landau ME, Gonzalez RS. et al. Serum creatine kinase after exercise: Drawing the line between physiological response and exertional rhabdomyolysis. Muscle Nerve 2012; 45: 356-362 doi:10.1002/mus.22317
- 4 Keltz E, Khan FY, Mann G. Rhabdomyolysis. The role of diagnostic and prognostic factors. Muscles Ligaments Tendons J 2013; 3: 303-312 Im Internet: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3940504/
- 5 Rodriguez-Capote K, Balion CM, Hill SA. et al. Utility of urine myoglobin for the prediction of acute renal failure in patients with suspected rhabdomyolysis: a systematic review. Clin Chem 2009; 55: 2190-2197 doi:10.1373/clinchem.2009.128546
- 6 Elkasrawy MN, Hamrick MW. Myostatin (GDF-8) as a key factor linking muscle mass and bone structure. J Musculoskelet Neuronal Interact 2010; 10: 56-63 Im Internet: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3753581&rendertype=abstract
- 7 Wallner C, Jaurich H, Wagner JM. et al. Inhibition of GDF8 (Myostatin) accelerates bone regeneration in diabetes mellitus type 2. Sci Rep 2017; 7: 9878 doi:10.1038/s41598-017-10404-z
- 8 Kambadur R, Sharma M, Smith TP. et al. Mutations in myostatin (GDF8) in double-muscled Belgian Blue and Piedmontese cattle. Genome Res 1997; 7: 910-916 Im Internet: http://www.ncbi.nlm.nih.gov/pubmed/9314496
- 9 Amthor H, Macharia R, Navarrete R. et al. Lack of myostatin results in excessive muscle growth but impaired force generation. Proc Natl Acad Sci 2007; 104: 1835-1840 doi:10.1073/pnas.0604893104
- 10 Wallner C, Jaurich H, Wagner JM. et al. Inhibition of GDF8 (Myostatin) accelerates bone regeneration in diabetes mellitus type 2. Sci Rep 2017; 7: 9878 Im Internet: http://www.nature.com/articles/s41598-017-10404-z
- 11 Wallner C, Drysch M, Becerikli M. et al. Interaction with the GDF8/11 pathway reveals treatment options for adenocarcinoma of the breast. The Breast 2018; 37: 134-141 Im Internet: http://linkinghub.elsevier.com/retrieve/pii/S0960977617307804
- 12 Mendell JR, Sahenk Z, Malik V. et al. A phase 1/2a follistatin gene therapy trial for becker muscular dystrophy. Mol Ther 2015; 23: 192-201 Im Internet: http://www.ncbi.nlm.nih.gov/pubmed/25322757
- 13 Invernizzi M, Carda S, Rizzi M. et al. Evaluation of serum myostatin and sclerostin levels in chronic spinal cord injured patients. Spinal Cord 2015; 53: 615-620 Im Internet: http://www.nature.com/articles/sc201561
- 14 Bo Li Z, Zhang J, Wagner KR. Inhibition of myostatin reverses muscle fibrosis through apoptosis. J Cell Sci 2012; 125: 3957-3965 doi:10.1242/jcs.090365
- 15 Benny Klimek ME, Aydogdu T, Link MJ. et al. Acute inhibition of myostatin-family proteins preserves skeletal muscle in mouse models of cancer cachexia. Biochem Biophys Res Commun 2010; 391: 1548-1554 doi:10.1016/j.bbrc.2009.12.123
- 16 Wallner C, Wagner JM, Dittfeld S. et al. Myostatin serum concentration as an indicator for deviated muscle metabolism in severe burn injuries. Scand J Surg 2018; 145749691881223 doi:10.1177/1457496918812230
- 17 Cohn RD, Liang H-Y, Shetty R. et al. Myostatin does not regulate cardiac hypertrophy or fibrosis. Neuromuscul Disord 2007; 17: 290-296 Im Internet: https://linkinghub.elsevier.com/retrieve/pii/S0960896607000193
- 18 Silljé HHW, de Boer RA. Myostatin: an overlooked player in heart failure?. Eur J Heart Fail 2010; 12: 420-422 doi:10.1093/eurjhf/hfq044
- 19 Frink M, Hildebrand F, Krettek C. et al. Compartment syndrome of the lower leg and foot. Clin Orthop Relat Res 2010; 468: 940-950 Im Internet: http://www.ncbi.nlm.nih.gov/pubmed/19472025
- 20 Türkmen N, Eren B, Fedakar R. et al. [Deaths from electrical current injuries in Bursa city of Turkey]. Ulus Travma Acil Cerrahi Derg 2008; 14: 65-69 Im Internet: http://www.ncbi.nlm.nih.gov/pubmed/18306070
- 21 Al B, Aldemir M, Güloğlu C. et al. [Epidemiological characteristics of electrical injuries of patients applied to the emergency department]. Ulus Travma Acil Cerrahi Derg 2006; 12: 135-142 Im Internet: http://www.ncbi.nlm.nih.gov/pubmed/16676253
- 22 Koumbourlis AC. Electrical injuries. Crit Care Med 2002; 30: S424-S430 Im Internet: http://www.ncbi.nlm.nih.gov/pubmed/12528784
- 23 McCann M, Hunting KL, Murawski J. et al. Causes of electrical deaths and injuries among construction workers. Am J Ind Med 2003; 43: 398-406 Im Internet: http://www.ncbi.nlm.nih.gov/pubmed/12645095