RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000031.xml
Klin Monbl Augenheilkd 2019; 236(06): 816-824
DOI: 10.1055/a-0899-6601
DOI: 10.1055/a-0899-6601
Statement
Stellungnahme von DOG, RG und BVA zur therapeutischen Anwendung von voretigene neparvovec (Luxturna™) in der Augenheilkunde[*]
Stand Januar 2019Weitere Informationen
Publikationsverlauf
Publikationsdatum:
22. Mai 2019 (online)
Seit dem 23. November 2018 ist das Medikament Luxturna™ zur Behandlung von Netzhautdystrophien bei Patienten mit biallelischen Mutationen in RPE65 in der Europäischen Union zugelassen. Im Folgenden werden die zwischen der Retinologischen Gesellschaft, der Deutschen Ophthalmologischen Gesellschaft und dem Berufsverband der Augenärzte Deutschlands konsentierten Behandlungsempfehlungen und das Anwendungsspektrum dargelegt.
* Diese Stellungnahme erscheint ebenfalls in der Zeitschrift Der Ophthalmologe, Springer Verlag, Heidelberg.
-
Literatur
- 1 Russell S, Bennett J, Wellman JA. et al. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial. Lancet 2017; 390: 849-860 doi:10.1016/S0140-6736(17)31868-8
- 2 Bellingrath JS, Fischer MD. Gene therapy as a treatment concept for inherited retinal diseases. Ophthalmologe 2015; 112: 720-727 doi:10.1007/s00347-015-0121-8
- 3 Fischer MD. On retinal gene therapy. Ophthalmologica 2016; 236: 1-7 doi:10.1159/000445782
- 4 Thompson DA, Gyurus P, Fleischer LL. et al. Genetics and phenotypes of RPE65 mutations in inherited retinal degeneration. Invest Ophthalmol Vis Sci 2000; 41: 4293-4299
- 5 Chung DC, Bertelsen M, Lorenz B. et al. The natural history of inherited retinal dystrophy due to biallelic mutations in the RPE65 gene. Am J Ophthalmol 2018;
- 6 Lorenz B, Gyurus P, Preising M. et al. Early-onset severe rod-cone dystrophy in young children with RPE65 mutations. Invest Ophthalmol Vis Sci 2000; 41: 2735-2742
- 7 Lorenz B, Poliakov E, Schambeck M. et al. A comprehensive clinical and biochemical functional study of a novel RPE65 hypomorphic mutation. Invest Ophthalmol Vis Sci 2008; 49: 5235-5242 doi:10.1167/iovs.07-1671
- 8 Narfstrom K, Vaegan KM, Bragadottir R. et al. Assessment of structure and function over a 3-year period after gene transfer in RPE65-/- dogs. Doc Ophthalmol 2005; 111: 39-48 doi:10.1007/s10633-005-3159-0
- 9 Maguire AM, High KA, Auricchio A. et al. Age-dependent effects of RPE65 gene therapy for Leberʼs congenital amaurosis: a phase 1 dose-escalation trial. Lancet 2009; 374: 1597-1605 doi:10.1016/S0140-6736(09)61836-5
- 10 Maguire AM, Simonelli F, Pierce EA. et al. Safety and efficacy of gene transfer for Leberʼs congenital amaurosis. N Engl J Med 2008; 358: 2240-2248 doi:10.1056/NEJMoa0802315
- 11 Cideciyan AV, Jacobson SG, Beltran WA. et al. Human retinal gene therapy for Leber congenital amaurosis shows advancing retinal degeneration despite enduring visual improvement. Proc Natl Acad Sci U S A 2013;
- 12 Bainbridge JW, Smith AJ, Barker SS. et al. Effect of gene therapy on visual function in Leberʼs congenital amaurosis. N Engl J Med 2008; 358: 2231-2239 doi:10.1056/NEJMoa0802268
- 13 Stieger K, Lorenz B. Gentherapie bei degenerativen Erkrankungen der Netzhaut – ein Update. Z Prakt Augenheilkd 2018; 39: 241-254
- 14 Nelles M, Stieger K, Preising MN. et al. Shared decision-making, control preferences and psychological well-being in patients with RPE65 deficiency awaiting experimental gene therapy. Ophthalmic Res 2015; 54: 96-102 doi:10.1159/000435887
- 15 Lorenz B, Wabbels B, Wegscheider E. et al. Lack of fundus autofluorescence to 488 nanometers from childhood on in patients with early-onset severe retinal dystrophy associated with mutations in RPE65. Ophthalmology 2004; 111: 1585-1594 doi:10.1016/j.ophtha.2004.01.033
- 16 Paunescu K, Wabbels B, Preising MN. et al. Longitudinal and cross-sectional study of patients with early-onset severe retinal dystrophy associated with RPE65 mutations. Graefes Arch Clin Exp Ophthalmol 2005; 243: 417-426 doi:10.1007/s00417-004-1020-x
- 17 Robson AG, Nilsson J, Li S. et al. ISCEV guide to visual electrodiagnostic procedures. Doc Ophthalmol 2018; 136: 1-26 doi:10.1007/s10633-017-9621-y
- 18 Kumaran N, Pennesi ME, Yang P, Trzupek KM, Schlechter C, Moore AT, Weleber RG, Michaelides M. Leber congenital amaurosis/early-onset severe retinal dystrophy overview. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, Amemiya A. eds. GeneReviews®. Seattle: University of Washington; 1993
- 19 Jacobson SG, Aleman TS, Cideciyan AV. et al. Human cone photoreceptor dependence on RPE65 isomerase. Proc Natl Acad Sci U S A 2007; 104: 15123-15128 doi:10.1073/pnas.0706367104
- 20 Lorenz B, Strohmayr E, Zahn S. et al. Chromatic pupillometry dissects function of the three different light-sensitive retinal cell populations in RPE65 deficiency. Invest Ophthalmol Vis Sci 2012; 53: 5641-5652 doi:10.1167/iovs.12-9974
- 21 Roman AJ, Schwartz SB, Aleman TS. et al. Quantifying rod photoreceptor-mediated vision in retinal degenerations: dark-adapted thresholds as outcome measures. Exp Eye Res 2005; 80: 259-272 doi:10.1016/j.exer.2004.09.008
- 22 Roman AJ, Cideciyan AV, Aleman TS. et al. Full-field stimulus testing (FST) to quantify visual perception in severely blind candidates for treatment trials. Physiol Meas 2007; 28: N51-N56 doi:10.1088/0967-3334/28/8/N02
- 23 Jacobson SG, Aleman TS, Cideciyan AV. et al. Defining the residual vision in leber congenital amaurosis caused by RPE65 mutations. Invest Ophthalmol Vis Sci 2009; 50: 2368-2375 doi:10.1167/iovs.08-2696
- 24 Gu SM, Thompson DA, Srikumari CR. et al. Mutations in RPE65 cause autosomal recessive childhood-onset severe retinal dystrophy. Nat Genet 1997; 17: 194-197 doi:10.1038/ng1097-194
- 25 Fischer MD, Hickey DG, Singh MS. et al. Evaluation of an optimized injection system for retinal gene therapy in human patients. Hum Gene Ther Methods 2016; 27: 150-158 doi:10.1089/hgtb.2016.086
- 26 Seitz IP, Michalakis S, Wilhelm B. et al. Superior retinal gene transfer and biodistribution profile of subretinal versus Intravitreal delivery of AAV8 in nonhuman primates. Invest Ophthalmol Vis Sci 2017; 58: 5792-5801 doi:10.1167/iovs.17-22473
- 27 Reichel FF, Peters T, Wilhelm B. et al. Humoral immune response after intravitreal but not after subretinal AAV8 in primates and patients. Invest Ophthalmol Vis Sci 2018; 59: 1910-1915 doi:10.1167/iovs.17-22494
- 28 Bennett J, Ashtari M, Wellman J. et al. AAV2 gene therapy readministration in three adults with congenital blindness. Sci Transl Med 2012; 4: 120ra115 doi:10.1126/scitranslmed.3002865
- 29 Willett K, Bennett J. Immunology of AAV-mediated gene transfer in the eye. Front Immunol 2013; 4: 261 doi:10.3389/fimmu.2013.00261
- 30 Testa F, Maguire AM, Rossi S. et al. Three-year follow-up after unilateral subretinal delivery of adeno-associated virus in patients with Leber congenital Amaurosis type 2. Ophthalmology 2013; 120: 1283-1291 doi:10.1016/j.ophtha.2012.11.048
- 31 Ashtari M, Zhang H, Cook PA. et al. Plasticity of the human visual system after retinal gene therapy in patients with Leberʼs congenital amaurosis. Sci Transl Med 2015; 7: 296ra110 doi:10.1126/scitranslmed.aaa8791
- 32 Jacobson SG, Cideciyan AV, Roman AJ. et al. Improvement and decline in vision with gene therapy in childhood blindness. N Engl J Med 2015; 372: 1920-1926 doi:10.1056/NEJMoa1412965