Subscribe to RSS
DOI: 10.1055/a-0916-6728
Schilddrüse und Knochen
Thyroid and BonePublication History
Publication Date:
03 September 2019 (online)
Zusammenfassung
In einer alternden Gesellschaft nimmt die Prävalenz der Osteoporose und die durch sie verursachte Morbidität und Mortalität eine zunehmende Rolle ein. Auch Schilddrüsenfunktionsstörungen sind im Alter häufiger, sodass sich ein fataler Synergismus in der Entstehung von osteoporotischen Frakturen ergibt. Im Erwachsenenalter geht eine Hyperthyreose mit Knochenverlust und erhöhtem Knochenumsatz einher, primär bedingt durch eine gesteigerte Knochenresorption durch Osteoklasten. Die manifeste Hyperthyreose gehört zu den gut etablierten Ursachen einer sekundären Osteoporose und von Fragilitätsfrakturen. Eine latente Hyperthyreose wirkt sich ebenfalls negativ auf die Knochenmineraldichte aus und ist mit Frakturen assoziiert. Bei den meisten Patienten mit manifester oder latenter Hyperthyreose führt die Wiederherstellung einer Euthyreose zu einer Normalisierung der Knochendichte und Reduktion des Frakturrisikos. Eine TSH-suppressive Substitutionstherapie nach Schilddrüsenoperation wegen eines differenzierten Schilddrüsenkarzinoms ist ebenfalls mit einem erhöhten osteoporotischen Frakturrisiko assoziiert, sodass eine zeitlich begrenzte und risikoadaptierte TSH-Suppression empfohlen wird und eine antiresorptive Behandlung indiziert sein kann. Eine Hypothyreose im Erwachsenenalter führt zu einem verlangsamten Knochenumsatz mit gesteigerter Mineralisierung. Die Assoziation mit einem erhöhten Frakturrisiko korreliert mit einer erhöhten Sturzneigung und nicht mit einer Veränderung des Knochenstoffwechsels. Bei Kindern und Jugendlichen ist eine normale Schilddrüsenfunktion zur Ausbildung einer adäquaten Knochenmasse und Knochenfestigkeit sowie zum Erreichen der vorgesehenen Körpergröße erforderlich. Sowohl Hyperthyreose als auch Hypothyreose führen im Kindes- und Jugendalter mit verschiedenen Mechanismen zu Minderwuchs und verminderter Knochenqualität.
Abstract
With increasing longevity, prevalence, morbidity and mortality of osteoporosis gains momentum. As thyroid dysfunction also becomes more prevalent with age, a fatal synergism causes an increase in osteoporotic fractures. In adults, hyperthyroidism leads to a loss of bone matrix and an increase in bone turnover, mostly due to an increased bone resorption by osteoclasts. Apparent hyperthyroidism has been well established as a cause of secondary osteoporosis and fragility fractures. Subclinical hyperthyroidism has a negative impact on bone mineral density, too and also causes an increase in fractures. In most patients with apparent or subclinical hyperthyroidism, restoration of euthyroidism normalizes bone density and reduces fracture risk. A TSH-suppressive thyroid hormone treatment after surgery for differentiated thyroid carcinoma has also been correlated with an increased risk for osteoporotic fractures. Thus, TSH-suppression should be temporary and stratified by risk. Also, concomittant antiresorptive treatment may be indicated. Hypothyroidism reduces bone turnover and increases its mineralization. Its association with an increased fracture risk correlates with postural instability and a tendency to fall rather than changes in bone metabolism. In children and adolescents, a normal thyroid function is essential for developing an adequate bone mass and stability, as well as obtaining the anticipated body length. Although by different mechanisms, both hyperthyroidism and hypothyroidism in childhood and adolescence cause growth retardation and a reduction of bone quality.
-
Literatur
- 1 DVO. DVO Leitlinie Osteoporose 2017. 2017 Im Internet: http://www.dv-osteologie.org/dvo_leitlinien/dvo-leitlinie-2017 , Datum letzter Zugriff: 01.06.2019
- 2 Laurberg P, Bülow Pedersen I, Knudsen N. et al. Environmental Iodine Intake Affects the Type of Nonmalignant Thyroid Disease. Thyroid 2001; 11: 457-469
- 3 Kanis JA, Harvey NC, Johansson H. et al. Overview of fracture prediction tools. J Clin Densitom 2017; 20: 444-450
- 4 Rendl S, Lapa C, Blümel C. et al. Decision making for osteoporotic treatment using FRAX or DVO risk algorithms in a clinical setting. J Musculoskelet Neuronal Interact 2013; 13: 301-307
- 5 Tsourdi E, Lademann F, Siggelkow H. Auswirkungen von Schilddrüsenfunktionsstörungen auf den Knochen. Internist 2018; 59: 661-666
- 6 Williams GR, Bassett JHD. Thyroid diseases and bone health. J Endocrinol Invest 2018; 41: 99-109
- 7 Vestergaard P, Mosekilde L. Fractures in patients with hyperthyroidism and hypothyroidism: a nationwide follow-up study in 16,249 patients. Thyroid 2002; 12: 411-419
- 8 Vestergaard P, Mosekilde L. Hyperthyroidism, bone mineral, and fracture risk - a meta-analysis. Thyroid 2003; 13: 585-593
- 9 Yang R, Yao L, Fang Y. et al. The relationship between subclinical thyroid dysfunction and the risk of fracture or low bone mineral density: a systematic review and meta-analysis of cohort studies. J Bone Miner Metab 2018; 36: 209-220
- 10 Uzzan B, Campos J, Cucherat M. et al. Effects on bone mass of long term treatment with thyroid hormones: a meta-analysis. J Clin Endocrinol Metab 1996; 81: 4278-4289
- 11 Faber J, Galløe AM. Changes in bone mass during prolonged subclinical hyperthyroidism due to L-thyroxine treatment: a meta-analysis. Eur J Endocrinol 1994; 130: 350-356
- 12 Mosekilde L, Eriksen EF, Charles P. Effects of thyroid hormones on bone and mineral metabolism. Endocrinol Metab Clin North Am 1990; 19: 35-63
- 13 Bauer DC, Ettinger B, Nevitt MC. Study of Osteoporotic Fractures Research Group. et al. Risk for fracture in women with low serum levels of thyroid-stimulating hormone. Ann Intern Med 2001; 134: 561-568
- 14 Vestergaard P, Rejnmark L, Mosekilde L. Influence of hyper-and hypothyroidism, and the effects of treatment with antithyroid drugs and levothyroxine on fracture risk. Calcif Tissue Int 2005; 77: 139-144
- 15 Bours SP, van Geel TA, Geusens PP. et al. Contributors to secondary osteoporosis and metabolic bone diseases in patients presenting with a clinical fracture. J Clin Endocrinol Metab 2011; 96: 1360-1367
- 16 Flynn RW, Bonellie SR, Jung RT. et al. Serum thyroid-stimulating hormone concentration and morbidity from cardiovascular disease and fractures in patients on long-term thyroxine therapy. J Clin Endocrinol Metab 2010; 95: 186-193
- 17 Mosekilde L, Melsen F, Bagger JP. et al. Bone changes in hyperthyroidism: interrelationships between bone morphometry, thyroid function and calcium-phosphorus metabolism. Acta Endocrinol 1977; 85: 515-525
- 18 Pantazi H, Papapetrou PD. Changes in parameters of bone and mineral metabolism during therapy for hyperthyroidism. J Clin EndocrinolMetab 2000; 85: 1099-1106
- 19 Blum MR, Bauer DC, Collet TH. Thyroid Studies Collaboration. et al. Subclinical thyroid dysfunction and fracture risk: a meta-analysis. JAMA 2015; 313: 2055-2065
- 20 Abrahamsen B, Jørgensen HL, Laulund AS. et al. Low serum thyrotropin level and duration of suppression as a predictor of major osteoporotic fractures – the OPENTHYRO register cohort. J Bone Miner Res 2014; 29: 2040-2050
- 21 Rosen CJ, Adler RA. Longitudinal changes in lumbar bone density among thyrotoxic patients after attainment of euthyroidism. J Clin Endocrinol Metab 1992; 75: 1531-1534
- 22 Tsevis K, Trakakis E, Pergialiotis V. et al. The influence of thyroid disorders on bone density and biochemical markers of bone metabolism. Horm Mol Biol Clin Investig 2018; 35: 1868-1891
- 23 Wang LY, Smith AW, Palmer FL. et al. Thyrotropin suppression increases the risk of osteoporosis without decreasing recurrence in ATA low- and intermediate-risk patients with differentiated thyroid carcinoma. Thyroid 2015; 25: 300-307
- 24 Haugen BR, Alexander EK, Bible KC. et al. American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2015; 26: 1-133
- 25 Hung CL, Yeh CC, Sung PS. et al. Is partial or total thyroidectomy associated with risk of long-term osteoporosis: a nationwide population-based study. World J Surg 2018; 42: 2864-2871
- 26 Williams GR. Is prophylactic anti-resorptive therapy required in thyroid cancer patients receiving TSH-suppressive treatment with thyroxine?. J Endocrinol Invest 2014; 37: 775-779
- 27 Eriksen EF, Mosekilde L, Melsen F. Kinetics of trabecular bone resorption and formation in hypothyroidism: evidence for a positive balance per remodeling cycle. Bone 1986; 7: 101-108
- 28 Salerno M, Micillo M, Di Maio S. et al. Longitudinal growth, sexual maturation and final height in patients with congenital hypothyroidism detected by neonatal screening. Eur J Endocrinol 2001; 145: 377-383
- 29 Vadiveloo T, Donnan PT, Murphy MJ. et al. Age- and Gender-Specific TSH Reference Intervals in People With No Obvious Thyroid Disease in Tayside, Scotland: The Thyroid Epidemiology, Audit, and Research Study (TEARS). J Clin Endocrinol Metab 2013; 98: 1147-1153