Zeitschrift für Orthomolekulare Medizin 2019; 17(02): 44-49
DOI: 10.1055/a-0920-2443
Nährstoff-Spezial
© Georg Thieme Verlag KG Stuttgart · New York

Vitamin A (Retinol)

Uwe Gröber
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
19. Juli 2019 (online)

Zusammenfassung

Vitamin A erfüllt in seinen 3 aktiven Formen Retinol, Retinal und Retinsäure zahlreiche physiologische Funktionen, u. a. bei Genexpression und Hirnentwicklung, im Immunsystem und beim Sehvorgang. Bei vielen Stoffwechselschritten wirkt es synergistisch mit Vitamin D. Es deutet sich an, dass mind. 25 % der Bevölkerung in Deutschland die empfohlene Aufnahme von Vitamin A mit der Ernährung nicht erreichen. Die Bedarfsdeckung durch Carotinoide wurde lange überschätzt, da Absorption und Konversion interindividuell stark schwanken.

 
  • Literatur

  • 1 Guo Y, Brown C, Ortiz C, Noelle RJ. Leukocyte homing, fate, and function are controlled by retinoic acid. Physiol Rev 2015; 95 (01) : 125-148
  • 2 Sandell LL, Sanderson BW, Moiseyev G. et al. RDH10 is essential for synthesis of embryonic retinoic acid and is required for limb, craniofacial, and organ development. Genes Dev 2007; 21 (09) : 1113-1124
  • 3 Dollé P, Ruberte E, Kastner P. et al. Differential expression of genes encoding alpha, β and gamma retinoic acid receptors and CRABP in the developing limbs of the mouse. Nature 1989; 342 (6250): 702-705
  • 4 WHO. Global prevalence of vitamin A deficiency in populations at risk 1995 – 2005. WHO Global Database on Vitamin A Deficiency. Genf 2009
  • 5 Mayo-Wilson E, Imdad A, Herzer K. et al. Vitamin A supplements for preventing mortality, illness, and blindness in children aged under 5: systematic review and meta-analysis. BMJ 2011; 343: d5094 . doi: 10.1136/bmj.d5094 .
  • 6 Hou N, Ren L, Gong M. et al. Vitamin A deficiency impairs spatial learning and memory: the mechanism of abnormal CBP-dependent histone acetylation regulated by retinoic acid receptor alpha. Mol Neurobiol 2015; 51 (02) : 633-647
  • 7 Rothman KJ, Moore LL, Singer MR. et al. Teratogenicity of high vitamin A intake. N Eng J Med 1995; 333 (21) : 1369-1373
  • 8 DGE ÖGE, SGE SVE. (Hrsg.) Referenzwerte für die Nährstoffzufuhr. 2.. Aufl., 4. aktual. Ausg. Neustadt: Neuer Umschau Buchverlag; 2018
  • 9 De Urquiza AM, Liu S, Sjöberg M. et al. Docosahexaenoic acid, a ligand for the retinoid X receptor in mouse brain. Science 2000; 290 (5499): 2140-2144
  • 10 Lengqvist J, Mata De Urquiza A, Bergman AC. et al. Polyunsaturated fatty acids including docosahexaenoic and arachidonic acid bind to the retinoid X receptor alpha ligand-binding domain. Mol Cell Proteomics 2004; 3 (07) : 692-703
  • 11 Gröber U. Mikronährstoffe: Metabolic Tuning – Prävention – Therapie. 3. Aufl. Stuttgart: Wissenschaftliche Verlagsgesellschaft; 2011
  • 12 Lietz G, Oxley A, Leung W, Hesketh J. Single nucleotide polymorphisms upstream from the β-carotene 15,15'-monoxygenase gene influence provitamin A conversion efficiency in female volunteers. J Nutr 2012; 142 (01) : 161S-165S
  • 13 Tang G. Bioconversion of dietary provitamin A carotenoids to vitamin A in humans. Am J Clin Nutr 2010; 91 (05) : 1468S-1473S
  • 14 Maden M. Retinoic acid in the development, regeneration and maintenance of the nervous system. Nat Rev Neurosci 2007; 8 (10) : 755-765
  • 15 Fragoso YD, Shearer KD, Sementilli A. et al. High expression of retinoic acid receptors and synthetic enzymes in the human hippocampus. Brain Struct Funct 2012; 217 (02) : 473-483
  • 16 Bonhomme D, Pallet V, Dominguez G. et al. Retinoic acid modulates intrahippocampal levels of corticosterone in middle-aged mice: consequences on hippocampal plasticity and contextual memory. Front Aging Neurosci 2014; 6 : 6
  • 17 Touyarot K, Bonhomme D, Roux P. et al. A mid-life vitamin A supplementation prevents age-related spatial memory deficits and hippocampal neurogenesis alterations through CRABP-I. PLoS One 2013; 8 (08) : e72101
  • 18 Velhoen M, Brucklacher-Waldert V. Dietary influences on intestinal immunity. Nature Reviews Immunology 2012; 12 (10) : 696-708
  • 19 Iwata M, Hirakiyama A, Eshima Y. et al. Retinoic acid imprints gut-homing specificity on T cells. Immunity 2004; 21 (04) : 527-538
  • 20 Iwata M, Eshima Y, Kagechika H. Retinoic acids exert direct effects on T cells to suppress Th1 development and enhance Th2 development via retinoic acid receptors. Int Immunol 2003; 15 (08) : 1017-1025
  • 21 Takeuchi H, Yokota A, Ohoka Y. et al. Efficient induction of CCR9 on T cells requires coactivation of retinoic acid receptors and retinoid X receptors (RXRs): exaggerated T Cell homing to the intestine by RXR activation with organotins. J Immunol 2010; 185 (09) : 5289-5299
  • 22 Mucida D, Park Y, Kim G. et al. Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science. 2007; 317 (5835): 256-260
  • 23 Mora JR, Iwata M, von Andrian UH. Vitamin effects on the immune system: vitamins A and D take centre stage. Nat Rev Immunol 2008; 8 (09) : 685-698
  • 24 Kang SG, Lim HW, Andrisani OM. et al. Vitamin A metabolites induce gut-homing FoxP3 + regulatory T cells. J Immunol 2007; 179 (06) : 3724-3733
  • 25 Rampal R, Awasthi A, Ahuja V. Retinoic acid-primed human dendritic cells inhibit Th9 cells and induce Th1/Th17 cell differentiation. J Leukoc Biol 2016; 100 (01) : 111-120
  • 26 Xiao S, Jin H, Korn T. et al. Retinoic acid increases Foxp3 + regulatory T cells and inhibits development of Th17 cells by enhancing TGF-β-driven Smad3 signaling and inhibiting IL-6 and IL-23 receptor expression. J Immunol 2008; 181 (04) : 2277-2284
  • 27 Mucida D, Park Y, Kim G. et al. Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science 2007; 317 (5835): 256-260
  • 28 Abdolahi M, Yavari P, Honarvar NM. et al. Molecular Mechanisms of the Action of Vitamin A in Th17/Treg Axis in. Multiple Sclerosis. J Mol Neurosci 2015; 57 (04) : 605-613
  • 29 Fragoso YD, Stoney PN, McCaffery PJ. The evidence for a beneficial role of vitamin A in multiple sclerosis. CNS Drugs 2014; 28 (04) : 291-299
  • 30 Reza Dorosty-Motlagh A, Mohammadzadeh Honarvar N, Sedighiyan M, Abdolahi M. The Molecular Mechanisms of Vitamin A Deficiency in Multiple Sclerosis. J Mol Neurosci 2016; 60 (01) : 82-90