Horm Metab Res 2019; 51(07): 470-482
DOI: 10.1055/a-0926-3618
Review

Precision Surgery for Pheochromocytomas and Paragangliomas

Douglas Wiseman
1   Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
,
Mustapha El Lakis
1   Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
,
Naris Nilubol
1   Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
› Author Affiliations

Abstract

Since Felix Fränkel’s account of pheochromocytoma in 1886, great discoveries and vast advancements in the diagnosis, genetics, anatomical and functional imaging techniques, and surgical management of pheochromcytoma and paraganglioma (P-PGL) have been made. The improved insight in the pathophysiology of P-PGL and more accurate detection methods enable physicians to tailor the treatment plan to an individual based on the genetic profile and tumor behavior. This review will cover briefly the clinical features, diagnosis, genetic mutations, and imaging modalities that are used to guide current surgical management of these rare and interesting endocrinopathies.



Publication History

Received: 16 April 2018

Accepted: 09 May 2019

Article published online:
15 July 2019

Georg Thieme Verlag
Rüdigerstraße 14,70469 Stuttgart, Germany

 
  • References

  • 1 Chen H, Sippel RS, O'Dorisio MS. et al. The North American Neuroendocrine Tumor Society consensus guideline for the diagnosis and management of neuroendocrine tumors: Pheochromocytoma, paraganglioma, and medullary thyroid cancer. Pancreas 2010; 39: 775-783
  • 2 Lenders JW, Duh QY, Eisenhofer G. et al. Pheochromocytoma and paraganglioma: An endocrine society clinical practice guideline. J Clin Endocrinol Metab 2014; 99: 1915-1942
  • 3 Fränkel F. Ein Fall von doppelseitigem, völlig latent verlaufenen Nebennierentumor und gleichzeitiger Nephritis mit Veränderungen am Circulationsapparat und Retinitis. Arch Pathol Anatom Physiol Klin Med 1886; 103: 244-263
  • 4 Bausch B, Tischler AS, Schmid KW. et al. Max Schottelius: Pioneer in Pheochromocytoma. J Endocr Soc 2017; 1: 957-964
  • 5 Moore B. On the chromogen and on the active physiological substance of the suprarenal gland. J Physiol 1897; 21: 382-389
  • 6 Abel JJ. On epinephrine, the active constituent of the suprarenal capsule and its compounds. Am J Physiol 1899; 2: 3
  • 7 Takamine J. Adrenalin the active principle of the supra–renal glands and its mode of preparation. Am J Pharm 1901; 73: 523-531
  • 8 Manger WM. An overview of pheochromocytoma: history, current concepts, vagaries, and diagnostic challenges. Ann NY Acad Sci 2006; 1073: 1-20
  • 9 Mayo C. Paroxysmal hypertension with tumor of retroperitoneal nerve. JAMA 1927; 89: 1047-1050
  • 10 Gagner M, Lacroix A, Bolte E. Laparoscopic adrenalectomy in Cushing’s syndrome and pheochromocytoma. N Engl J Med 1992; 327: 1033
  • 11 Neumann HP, Vortmeyer A, Schmidt D. et al. Evidence of MEN-2 in the original description of classic pheochromocytoma. N Engl J Med 2007; 357: 1311-1315
  • 12 Fishbein L, Nathanson KL. Pheochromocytoma and paraganglioma: understanding the complexities of the genetic background. Cancer Genet 2012; 205: 1-11
  • 13 van Duinen N, Steenvoorden D, Kema IP. et al. Increased urinary excretion of 3-methoxytyramine in patients with head and neck paragangliomas. J Clin Endocrinol Metab 2010; 95: 209-214
  • 14 Eisenhofer G, Lenders JW, Siegert G. et al. Plasma methoxytyramine: Anovel biomarker of metastatic pheochromocytoma and paraganglioma in relation to established risk factors of tumour size, location and SDHB mutation status. Eur J Cancer 2012; 48: 1739-1749
  • 15 Lippmann M, Ford M, Lee C. et al. Use of desflurane during resection of phaeochromocytoma. Br J Anaesth 1994; 72: 707-709
  • 16 Rosow CE, Moss J, Philbin DM. et al. Histamine release during morphine and fentanyl anesthesia. Anesthesiology 1982; 56: 93-96
  • 17 Sumikawa K, Amakata Y. The pressor effect of droperidol on a patient with pheochromocytoma. Anesthesiology 1977; 46: 359-361
  • 18 Naranjo J, Dodd S, Martin YN. Perioperative management of pheochromocytoma. J Cardiothorac Vasc Anesth 2017; 31: 1427-1439
  • 19 Stolk RF, Bakx C, Mulder J. et al. Is the excess cardiovascular morbidity in pheochromocytoma related to blood pressure or to catecholamines?. J Clin Endocrinol Metab 2013; 98: 1100-1106
  • 20 Giavarini A, Chedid A, Bobrie G. et al. Acute catecholamine cardiomyopathy in patients with phaeochromocytoma or functional paraganglioma. Heart 2013; 99: 1438-1444
  • 21 Flynn E, Baqar S, Liu D. et al. Bowel perforation complicating an ACTH-secreting phaeochromocytoma. Endocrinol Diabetes Metab Case Rep 2016; 16-0061
  • 22 Ballav C, Naziat A, Mihai R. et al. Mini-review: Pheochromocytomas causing the ectopic ACTH syndrome. Endocrine 2012; 42: 69-73
  • 23 Kikuchi Y, Wada R, Sakihara S. et al. Pheochromocytoma with histologic transformation to composite type, complicated by watery diarrhea, hypokalemia, and achlorhydria syndrome. Endocr Pract 2012; 18: e91-e96
  • 24 Eisenhofer G, Goldstein DS, Walther MM. et al. Biochemical diagnosis of pheochromocytoma: How to distinguish true- from false-positive test results. J Clin Endocrinol Metab 2003; 88: 2656-2666
  • 25 Jansen JC, van den Berg R, Kuiper A. et al. Estimation of growth rate in patients with head and neck paragangliomas influences the treatment proposal. Cancer 2000; 88: 2811-2816
  • 26 Netterville JL, Jackson CG, Miller FR. et al. Vagal paraganglioma: A review of 46 patients treated during a 20-year period. Arch Otolaryngol Head Neck Surg 1998; 124: 1133-1140
  • 27 Jackson CG. Glomus tympanicum and glomus jugulare tumors. Otolaryngol Clin North Am 2001; 34: 941-970 vii
  • 28 Robertson V, Poli F, Hobson B. et al. A systematic review and meta-analysis of the presentation and surgical management of patients with carotid body tumours. Eur J Vasc Endovasc Surg 2019; 57: 477-486
  • 29 Gardner P, Dalsing M, Weisberger E. et al. Carotid body tumors, inheritance, and a high incidence of associated cervical paragangliomas. Am J Surg 1996; 172: 196-199
  • 30 Kloos RT, Gross MD, Francis IR. et al. Incidentally discovered adrenal masses. Endocr Rev 1995; 16: 460-484
  • 31 Young Jr WF. Management approaches to adrenal incidentalomas. A view from Rochester, Minnesota. Endocrinol Metab Clin North Am 2000; 29: 159-185 x
  • 32 Darr R, Kuhn M, Bode C. et al. Accuracy of recommended sampling and assay methods for the determination of plasma-free and urinary fractionated metanephrines in the diagnosis of pheochromocytoma and paraganglioma: A systematic review. Endocrine 2017; 56: 495-503
  • 33 Zuber S, Wesley R, Prodanov T. et al. Clinical utility of chromogranin A in SDHx-related paragangliomas. Eur J Clin Invest 2014; 44: 365-371
  • 34 Lenders JW, Willemsen JJ, Eisenhofer G. et al. Is supine rest necessary before blood sampling for plasma metanephrines?. Clin Chem 2007; 53: 352-354
  • 35 Timmers HJ, Pacak K, Huynh TT. et al. Biochemically silent abdominal paragangliomas in patients with mutations in the succinate dehydrogenase subunit B gene. J Clin Endocrinol Metab 2008; 93: 4826-4832
  • 36 Eisenhofer G, Lenders JW, Goldstein DS. et al. Pheochromocytoma catecholamine phenotypes and prediction of tumor size and location by use of plasma free metanephrines. Clin Chem 2005; 51: 735-744
  • 37 Darr R, Nambuba J, Del Rivero J. et al. Novel insights into the polycythemia-paraganglioma-somatostatinoma syndrome. Endocr Relat Cancer 2016; 23: 899-908
  • 38 Janssen I, Chen CC, Zhuang Z. et al. Functional imaging signature of patients presenting with polycythemia/paraganglioma syndromes. J Nucl Med 2017; 58: 1236-1242
  • 39 Dahia PL. Pheochromocytoma and paraganglioma pathogenesis: Learning from genetic heterogeneity. Nat Rev Cancer 2014; 14: 108-119
  • 40 Babic B, Patel D, Aufforth R. et al. Pediatric patients with pheochromocytoma and paraganglioma should have routine preoperative genetic testing for common susceptibility genes in addition to imaging to detect extra-adrenal and metastatic tumors. Surgery 2017; 161: 220-227
  • 41 Group NGSiPS . Toledo RA, Burnichon N. et al. Consensus Statement on next-generation-sequencing-based diagnostic testing of hereditary phaeochromocytomas and paragangliomas. Nat Rev Endocrinol 2017; 13: 233-247
  • 42 Nockel P, El Lakis M, Gaitanidis A. et al. Preoperative genetic testing in pheochromocytomas and paragangliomas influences the surgical approach and the extent of adrenal surgery. Surgery 2018; 163: 191-196
  • 43 Buffet A, Ben Aim L, Leboulleux S. et al. Positive impact of genetic test on the management and outcome of patients with paraganglioma and/or pheochromocytoma. J Clin Endocrinol Metab 2019; 104: 1109-1118
  • 44 Favier J, Amar L, Gimenez-Roqueplo AP. Paraganglioma and phaeochromocytoma: From genetics to personalized medicine. Nat Rev Endocrinol 2015; 11: 101-111
  • 45 Remacha L, Curras-Freixes M, Torres-Ruiz R. et al. Gain-of-function mutations in DNMT3A in patients with paraganglioma. Genet Med 2018; 20: 1644-1651
  • 46 Remacha L, Comino-Mendez I, Richter S. et al. targeted exome sequencing of krebs cycle genes reveals candidate cancer-predisposing mutations in pheochromocytomas and paragangliomas. Clin Cancer Res 2017; 23: 6315-6324
  • 47 Buffet A, Morin A, Castro-Vega LJ. et al. Germline Mutations in the Mitochondrial 2-Oxoglutarate/Malate Carrier SLC25A11 Gene Confer a Predisposition to Metastatic Paragangliomas. Cancer Res 2018; 78: 1914-1922
  • 48 Fishbein L, Leshchiner I, Walter V. et al. Comprehensive molecular characterization of pheochromocytoma and paraganglioma. Cancer Cell 2017; 31: 181-193
  • 49 Juhlin CC, Stenman A, Haglund F. et al. Whole-exome sequencing defines the mutational landscape of pheochromocytoma and identifies KMT2D as a recurrently mutated gene. Genes Chromosomes Cancer 2015; 54: 542-554
  • 50 Gupta G, Pacak K, Committee AAS. Precision Medicine: An Update on Genotype/Biochemical Phenotype Relationships in Pheochromocytoma/Paraganglioma Patients. Endocr Pract 2017; 23: 690-704
  • 51 McInerney-Leo AM, Marshall MS, Gardiner B. et al. Whole exome sequencing is an efficient and sensitive method for detection of germline mutations in patients with phaeochromcytomas and paragangliomas. Clin Endocrinol (Oxf) 2014; 80: 25-33
  • 52 Rattenberry E, Vialard L, Yeung A. et al. A comprehensive next generation sequencing-based genetic testing strategy to improve diagnosis of inherited pheochromocytoma and paraganglioma. J Clin Endocrinol Metab 2013; 98: E1248-E1256
  • 53 Castro-Vega LJ, Buffet A, De Cubas AA. et al. Germline mutations in FH confer predisposition to malignant pheochromocytomas and paragangliomas. Hum Mol Genet 2014; 23: 2440-2446
  • 54 Letouze E, Martinelli C, Loriot C. et al. SDH mutations establish a hypermethylator phenotype in paraganglioma. Cancer Cell 2013; 23: 739-752
  • 55 Cascon A, Comino-Mendez I, Curras-Freixes M. et al. Whole-exome sequencing identifies MDH2 as a new familial paraganglioma gene. J Natl Cancer Inst 2015; 107: djv053 doi: 10.1093/jnci/djv053
  • 56 Selak MA, Armour SM, MacKenzie ED. et al. Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell 2005; 7: 77-85
  • 57 Xiao M, Yang H, Xu W. et al. Inhibition of alpha-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors. Genes Dev 2012; 26: 1326-1338
  • 58 Forsythe JA, Jiang BH, Iyer NV. et al. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol 1996; 16: 4604-4613
  • 59 Ema M, Taya S, Yokotani N. et al. A novel bHLH-PAS factor with close sequence similarity to hypoxia-inducible factor 1alpha regulates the VEGF expression and is potentially involved in lung and vascular development. Proc Natl Acad Sci USA 1997; 94: 4273-4278
  • 60 Semenza GL. HIF-1 and human disease: One highly involved factor. Genes Dev 2000; 14: 1983-1991
  • 61 Gimenez-Roqueplo AP, Favier J, Rustin P. et al. Mutations in the SDHB gene are associated with extra-adrenal and/or malignant phaeochromocytomas. Cancer Res 2003; 63: 5615-5621
  • 62 Pamporaki C, Hamplova B, Peitzsch M. et al. Characteristics of Pediatric vs. Adult Pheochromocytomas and Paragangliomas. J Clin Endocrinol Metab 2017; 102: 1122-1132
  • 63 Assadipour Y, Sadowski SM, Alimchandani M. et al. SDHB mutation status and tumor size but not tumor grade are important predictors of clinical outcome in pheochromocytoma and abdominal paraganglioma. Surgery 2017; 161: 230-239
  • 64 Jochmanova I, Wolf KI, King KS. et al. SDHB-related pheochromocytoma and paraganglioma penetrance and genotype-phenotype correlations. J Cancer Res Clin Oncol 2017; 143: 1421-1435
  • 65 Tufton N, Shapiro L, Srirangalingam U. et al. Outcomes of annual surveillance imaging in an adult and paediatric cohort of succinate dehydrogenase B mutation carriers. Clin Endocrinol (Oxf) 2017; 86: 286-296
  • 66 Ricketts CJ, Forman JR, Rattenberry E. et al. Tumor risks and genotype-phenotype-proteotype analysis in 358 patients with germline mutations in SDHB and SDHD. Hum Mutat 2010; 31: 41-51
  • 67 King KS, Prodanov T, Kantorovich V. et al. Metastatic pheochromocytoma/paraganglioma related to primary tumor development in childhood or adolescence: Significant link to SDHB mutations. J Clin Oncol 2011; 29: 4137-4142
  • 68 Amar L, Bertherat J, Baudin E. et al. Genetic testing in pheochromocytoma or functional paraganglioma. J Clin Oncol 2005; 23: 8812-8818
  • 69 Quayle FJ, Fialkowski EA, Benveniste R. et al. Pheochromocytoma penetrance varies by RET mutation in MEN 2A. Surgery 2007; 142: 800-805 discussion 805 e801
  • 70 Lopez-Jimenez E, Gomez-Lopez G, Leandro-Garcia LJ. et al. Research resource: Transcriptional profiling reveals different pseudohypoxic signatures in SDHB and VHL-related pheochromocytomas. Mol Endocrinol 2010; 24: 2382-2391
  • 71 Burnichon N, Vescovo L, Amar L. et al. Integrative genomic analysis reveals somatic mutations in pheochromocytoma and paraganglioma. Hum Mol Genet 2011; 20: 3974-3985
  • 72 Comino-Mendez I, de Cubas AA, Bernal C. et al. Tumoral EPAS1 (HIF2A) mutations explain sporadic pheochromocytoma and paraganglioma in the absence of erythrocytosis. Hum Mol Genet 2013; 22: 2169-2176
  • 73 Timmers HJ, Kozupa A, Eisenhofer G. et al. Clinical presentations, biochemical phenotypes, and genotype-phenotype correlations in patients with succinate dehydrogenase subunit B-associated pheochromocytomas and paragangliomas. J Clin Endocrinol Metab 2007; 92: 779-786
  • 74 Eisenhofer G, Goldstein DS, Sullivan P. et al. Biochemical and clinical manifestations of dopamine-producing paragangliomas: Utility of plasma methoxytyramine. J Clin Endocrinol Metab 2005; 90: 2068-2075
  • 75 Castinetti F, Taieb D, Henry JF. et al. Management of Endocriene Disease: Outcome of adrenal sparing surgery in heritable pheochromocytoma. Eur J Endocrinol 2016; 174: R9-R18
  • 76 Eisenhofer G, Walther MM, Huynh TT. et al. Pheochromocytomas in von Hippel-Lindau syndrome and multiple endocrine neoplasia type 2 display distinct biochemical and clinical phenotypes. J Clin Endocrinol Metab 2001; 86: 1999-2008
  • 77 Havekes B, van der Klaauw AA, Weiss MM. et al. Pheochromocytomas and extra-adrenal paragangliomas detected by screening in patients with SDHD-associated head-and-neck paragangliomas. Endocr Relat Cancer 2009; 16: 527-536
  • 78 Lumachi F, Tregnaghi A, Zucchetta P. et al. Sensitivity and positive predictive value of CT, MRI and 123I-MIBG scintigraphy in localizing pheochromocytomas: A prospective study. Nucl Med Commun 2006; 27: 583-587
  • 79 Jalil ND, Pattou FN, Combemale F. et al. Effectiveness and limits of preoperative imaging studies for the localisation of pheochromocytomas and paragangliomas: A review of 282 cases. French Association of Surgery (AFC), and The French Association of Endocrine Surgeons (AFCE). Eur J Surg 1998; 164: 23-28
  • 80 Gimenez-Roqueplo AP, Caumont-Prim A, Houzard C. et al. Imaging work-up for screening of paraganglioma and pheochromocytoma in SDHx mutation carriers: A multicenter prospective study from the PGL.EVA Investigators. J Clin Endocrinol Metab 2013; 98: E162-E173
  • 81 Jacques AE, Sahdev A, Sandrasagara M. et al. Adrenal phaeochromocytoma: Correlation of MRI appearances with histology and function. Eur Radiol 2008; 18: 2885-2892
  • 82 Brito JP, Asi N, Gionfriddo MR. et al. The incremental benefit of functional imaging in pheochromocytoma/paraganglioma: A systematic review. Endocrine 2015; 50: 176-186
  • 83 Janssen I, Blanchet EM, Adams K. et al. Superiority of [68Ga]-DOTATATE PET/CT to Other Functional Imaging Modalities in the Localization of SDHB-Associated Metastatic Pheochromocytoma and Paraganglioma. Clin Cancer Res 2015; 21: 3888-3895
  • 84 Timmers HJ, Chen CC, Carrasquillo JA. et al. Comparison of 18F-fluoro-L-DOPA, 18F-fluoro-deoxyglucose, and 18F-fluorodopamine PET and 123I-MIBG scintigraphy in the localization of pheochromocytoma and paraganglioma. J Clin Endocrinol Metab 2009; 94: 4757-4767
  • 85 Plouin PF, Amar L, Dekkers OM. et al. European Society of Endocrinology Clinical Practice Guideline for long-term follow-up of patients operated on for a phaeochromocytoma or a paraganglioma. Eur J Endocrinol 2016; 174: G1-G10
  • 86 Janssen I, Chen CC, Taieb D. et al. 68Ga-DOTATATE PET/CT in the Localization of Head and Neck Paragangliomas Compared with Other Functional Imaging Modalities and CT/MRI. J Nucl Med 2016; 57: 186-191
  • 87 Janssen I, Chen CC, Millo CM. et al. PET/CT comparing (68)Ga-DOTATATE and other radiopharmaceuticals and in comparison with CT/MRI for the localization of sporadic metastatic pheochromocytoma and paraganglioma. Eur J Nucl Med Mol Imaging 2016; 43: 1784-1791
  • 88 Crona J, Taieb D, Pacak K. New perspectives on pheochromocytoma and paraganglioma: toward a molecular classification. Endocr Rev 2017; 38: 489-515
  • 89 Luiz HV, Tanchee MJ, Pavlatou MG. et al. Are patients with hormonally functional phaeochromocytoma and paraganglioma initially receiving a proper adrenoceptor blockade? A retrospective cohort study. Clin Endocrinol (Oxf) 2016; 85: 62-69
  • 90 Shao Y, Chen R, Shen ZJ. et al. Preoperative alpha blockade for normotensive pheochromocytoma: is it necessary?. J Hypertens 2011; 29: 2429-2432
  • 91 Ulchaker JC, Goldfarb DA, Bravo EL. et al. Successful outcomes in pheochromocytoma surgery in the modern era. J Urol 1999; 161: 764-767
  • 92 Bravo EL. Pheochromocytoma: an approach to antihypertensive management. Ann NY Acad Sci 2002; 970: 1-10
  • 93 Groeben H, Nottebaum BJ, Alesina PF. et al. Perioperative alpha-receptor blockade in phaeochromocytoma surgery: An observational case series. Br J Anaesth 2017; 118: 182-189
  • 94 Pacak K. Preoperative management of the pheochromocytoma patient. J Clin Endocrinol Metab 2007; 92: 4069-4079
  • 95 Scholten A, Cisco RM, Vriens MR. et al. Pheochromocytoma crisis is not a surgical emergency. J Clin Endocrinol Metab 2013; 98: 581-591
  • 96 Malec K, Miskiewicz P, Witkowska A. et al. Comparison of phenoxybenzamine and doxazosin in perioperative management of patients with pheochromocytoma. Kardiol Pol 2017; 75: 1192-1198
  • 97 Goodman LSBL, Chabner B. Goodman & Gilman’s The pharmacological basis of therapeutics. In McGraw-Hill’s Access Anesthesiology; 13th edition New York: McGraw-Hill: 2018
  • 98 Lord MS, Augoustides JG. Perioperative management of pheochromocytoma: Focus on magnesium, clevidipine, and vasopressin. J Cardiothorac Vasc Anesth 2012; 26: 526-531
  • 99 Ippolito G, Palazzo FF, Sebag F. et al. Safety of laparoscopic adrenalectomy in patients with large pheochromocytomas: A single institution review. World J Surg 2008; 32: 840-844 discussion 845–846
  • 100 Wilhelm SM, Prinz RA, Barbu AM. et al. Analysis of large versus small pheochromocytomas: Operative approaches and patient outcomes. Surgery 2006; 140: 553-559 discussion 559–560
  • 101 Thompson GB, Grant CS, van Heerden JA. et al. Laparoscopic versus open posterior adrenalectomy: A case-control study of 100 patients. Surgery 1997; 122: 1132-1136
  • 102 Goers TA, Abdo M, Moley JF. et al. Outcomes of resection of extra-adrenal pheochromocytomas/paragangliomas in the laparoscopic era: A comparison with adrenal pheochromocytoma. Surg Endosc 2013; 27: 428-433
  • 103 Alesina PF, Hinrichs J, Meier B. et al. Minimally invasive cortical-sparing surgery for bilateral pheochromocytomas. Langenbecks Arch Surg 2012; 397: 233-238
  • 104 Aufforth RD, Ramakant P, Sadowski SM. et al. Pheochromocytoma Screening initiation and frequency in von Hippel–Lindau syndrome. J Clin Endocrinol Metab 2015; 100: 4498-4504
  • 105 Castinetti F, Qi XP, Walz MK. et al. Outcomes of adrenal-sparing surgery or total adrenalectomy in phaeochromocytoma associated with multiple endocrine neoplasia type 2: An international retrospective population-based study. Lancet Oncol 2014; 15: 648-655
  • 106 Machens A, Brauckhoff M, Holzhausen HJ. et al. Codon-specific development of pheochromocytoma in multiple endocrine neoplasia type 2. J Clin Endocrinol Metab 2005; 90: 3999-4003
  • 107 Thosani S, Ayala-Ramirez M, Palmer L. et al. The characterization of pheochromocytoma and its impact on overall survival in multiple endocrine neoplasia type 2. J Clin Endocrinol Metab 2013; 98: E1813-E1819
  • 108 Volkin D, Yerram N, Ahmed F. et al. Partial adrenalectomy minimizes the need for long-term hormone replacement in pediatric patients with pheochromocytoma and von Hippel–Lindau syndrome. J Pediatr Surg 2012; 47: 2077-2082
  • 109 Benhammou JN, Boris RS, Pacak K. et al. Functional and oncologic outcomes of partial adrenalectomy for pheochromocytoma in patients with von Hippel–Lindau syndrome after at least 5 years of followup. J Urol 2010; 184: 1855-1859
  • 110 Asari R, Scheuba C, Kaczirek K. et al. Estimated risk of pheochromocytoma recurrence after adrenal-sparing surgery in patients with multiple endocrine neoplasia type 2A. Arch Surg 2006; 141: 1199-1205. discussion 1205
  • 111 Nomine-Criqui C, Germain A, Ayav A. et al. Robot-assisted adrenalectomy: Indications and drawbacks. Updates Surg 2017; 69: 127-133
  • 112 Pedziwiatr M, Major P, Pisarska M. et al. Laparoscopic transperitoneal adrenalectomy in morbidly obese patients is not associated with worse short-term outcomes. Int J Urol 2017; 24: 59-63
  • 113 Vorselaars W, Postma EL, Mirallie E. et al. Hemodynamic instability during surgery for pheochromocytoma: Comparing the transperitoneal and retroperitoneal approach in a multicenter analysis of 341 patients. Surgery 2018; 163: 176-182
  • 114 Brunaud L, Nguyen-Thi PL, Mirallie E. et al. Predictive factors for postoperative morbidity after laparoscopic adrenalectomy for pheochromocytoma: A multicenter retrospective analysis in 225 patients. Surg Endosc 2016; 30: 1051-1059
  • 115 Lam AK. Update on Adrenal Tumours in 2017 World Health Organization (WHO) of Endocrine Tumours. Endocr Pathol. 2017. 28 213-227
  • 116 Roman-Gonzalez A, Zhou S, Ayala-Ramirez M. et al. Impact of surgical resection of the primary tumor on overall survival in patients with metastatic pheochromocytoma or sympathetic paraganglioma. Ann Surg 2018; 268: 172-178
  • 117 Ellis RJ, Patel D, Prodanov T. et al. Response after surgical resection of metastatic pheochromocytoma and paraganglioma: Can postoperative biochemical remission be predicted?. J Am Coll Surg 2013; 217: 489-496
  • 118 Eisenhofer G, Bornstein SR, Brouwers FM. et al. Malignant pheochromocytoma: Current status and initiatives for future progress. Endocr Relat Cancer 2004; 11: 423-436
  • 119 Jimenez C, Rohren E, Habra MA. et al. Current and future treatments for malignant pheochromocytoma and sympathetic paraganglioma. Curr Oncol Rep 2013; 15: 356-371
  • 120 Zografos GN, Vasiliadis G, Farfaras AN. et al. Laparoscopic surgery for malignant adrenal tumors. JSLS 2009; 13: 196-202
  • 121 El Lakis M, Gianakou A, Nockel P. et al. Radioguided surgery with gallium 68 dotatate for patients with neuroendocrine tumors. JAMA Surg 2019; 154: 40-45
  • 122 Ellis RJ, Patel D, Prodanov T. et al. The presence of SDHB mutations should modify surgical indications for carotid body paragangliomas. Ann Surg 2014; 260: 158-162
  • 123 van Hulsteijn LT, Corssmit EP, Coremans IE. et al. Regression and local control rates after radiotherapy for jugulotympanic paragangliomas: Systematic review and meta-analysis. Radiother Oncol 2013; 106: 161-168
  • 124 Shamblin WR, ReMine WH, Sheps SG. et al. Carotid body tumor (chemodectoma). Clinicopathologic analysis of ninety cases. Am J Surg 1971; 122: 732-739
  • 125 Straughan DM, Neychev VK, Sadowski SM. et al. preoperative imaging features are associated with surgical complications following carotid body tumor resection. World J Surg 2015; 39: 2084-2089
  • 126 Watzka FM, Fottner C, Miederer M. et al. Surgical therapy of neuroendocrine neoplasm with hepatic metastasis: Patient selection and prognosis. Langenbecks Arch Surg 2015; 400: 349-358
  • 127 Kohlenberg J, Welch B, Hamidi O. et al. efficacy and safety of ablative therapy in the treatment of patients with metastatic pheochromocytoma and paraganglioma. cancers (Basel). 2019. 11 pii: E195 DOI: 10.3390/cancers11020195
  • 128 Kotecka-Blicharz A, Hasse-Lazar K, Jurecka-Lubieniecka B. et al. Occurrence of phaeochromocytoma tumours in RET mutation carriers - A single-centre study. Endokrynol Pol 2016; 67: 54-58
  • 129 Mannelli M, Castellano M, Schiavi F. et al. Clinically guided genetic screening in a large cohort of italian patients with pheochromocytomas and/or functional or nonfunctional paragangliomas. J Clin Endocrinol Metab 2009; 94: 1541-1547
  • 130 Neumann HP, Pawlu C, Peczkowska M. et al. Distinct clinical features of paraganglioma syndromes associated with SDHB and SDHD gene mutations. JAMA 2004; 292: 943-951
  • 131 Burnichon N, Rohmer V, Amar L. et al. The succinate dehydrogenase genetic testing in a large prospective series of patients with paragangliomas. J Clin Endocrinol Metab 2009; 94: 2817-2827
  • 132 Benn DE, Gimenez-Roqueplo AP, Reilly JR. et al. Clinical presentation and penetrance of pheochromocytoma/paraganglioma syndromes. J Clin Endocrinol Metab 2006; 91: 827-836
  • 133 van der Tuin K, Mensenkamp AR, Tops CMJ. et al. Clinical Aspects of SDHA-Related Pheochromocytoma and Paraganglioma: A Nationwide Study. J Clin Endocrinol Metab 2018; 103: 438-445
  • 134 Bausch B, Schiavi F, Ni Y. et al. Clinical Characterization of the Pheochromocytoma and Paraganglioma Susceptibility Genes SDHA, TMEM127, MAX, and SDHAF2 for Gene-Informed Prevention. JAMA Oncol 2017; 3: 1204-1212
  • 135 Papathomas TG, Oudijk L, Persu A. et al. SDHB/SDHA immunohistochemistry in pheochromocytomas and paragangliomas: A multicenter interobserver variation analysis using virtual microscopy: A Multinational Study of the European Network for the Study of Adrenal Tumors (ENS@T). Mod Pathol 2015; 28: 807-821
  • 136 Tufton N, Ghelani R, Srirangalingam U. et al. SDHA mutated paragangliomas may be at high risk of metastasis. Endocr Relat Cancer 2017; 24: L43-L49
  • 137 Else T, Marvin ML, Everett JN. et al. The clinical phenotype of SDHC-associated hereditary paraganglioma syndrome (PGL3). J Clin Endocrinol Metab 2014; 99: E1482-E1486
  • 138 Bourdeau I, Grunenwald S, Burnichon N. et al. A SDHC Founder Mutation Causes Paragangliomas (PGLs) in the French Canadians: New Insights on the SDHC-Related PGL. J Clin Endocrinol Metab 2016; 101: 4710-4718
  • 139 Casey R, Garrahy A, Tuthill A. et al. Universal genetic screening uncovers a novel presentation of an SDHAF2 mutation. J Clin Endocrinol Metab 2014; 99: E1392-E1396
  • 140 Kunst HP, Rutten MH, de Monnink JP. et al. SDHAF2 (PGL2-SDH5) and hereditary head and neck paraganglioma. Clin Cancer Res 2011; 17: 247-254
  • 141 Kepenekian L, Mognetti T, Lifante JC. et al. Interest of systematic screening of pheochromocytoma in patients with neurofibromatosis type 1. Eur J Endocrinol 2016; 175: 335-344
  • 142 Moramarco J, El Ghorayeb N, Dumas N. et al. Pheochromocytomas are diagnosed incidentally and at older age in neurofibromatosis type 1. Clin Endocrinol (Oxf) 2017; 86: 332-339
  • 143 Gruber LM, Erickson D, Babovic-Vuksanovic D. et al. Pheochromocytoma and paraganglioma in patients with neurofibromatosis type 1. Clin Endocrinol (Oxf) 2017; 86: 141-149
  • 144 Walther MM, Herring J, Enquist E. et al. von Recklinghausen’s disease and pheochromocytomas. J Urol 1999; 162: 1582-1586
  • 145 Welander J, Andreasson A, Brauckhoff M. et al. Frequent EPAS1/HIF2alpha exons 9 and 12 mutations in non-familial pheochromocytoma. Endocr Relat Cancer 2014; 21: 495-504
  • 146 Burnichon N, Cascon A, Schiavi F. et al. MAX mutations cause hereditary and sporadic pheochromocytoma and paraganglioma. Clin Cancer Res 2012; 18: 2828-2837
  • 147 Yao L, Schiavi F, Cascon A. et al. Spectrum and prevalence of FP/TMEM127 gene mutations in pheochromocytomas and paragangliomas. JAMA 2010; 304: 2611-2619
  • 148 Stenman A, Welander J, Gustavsson I. et al. HRAS mutation prevalence and associated expression patterns in pheochromocytoma. Genes Chromosomes Cancer 2016; 55: 452-459
  • 149 Oudijk L, de Krijger RR, Rapa I. et al. H-RAS mutations are restricted to sporadic pheochromocytomas lacking specific clinical or pathological features: Data from a multi-institutional series. J Clin Endocrinol Metab 2014; 99: E1376-E1380