Subscribe to RSS
DOI: 10.1055/a-0966-9694
Das menschliche „Gewebs“-Mikrobiom im metabolischen Syndrom: der „Leaky Gut“ Hypothese auf der Spur
The human tissue microbiome in metabolic syndrome: Tracing the “leaky gut” hypothesis
Zusammenfassung
Durch die Veränderung der intestinalen Permeabilität können Faktoren wie das Mikrobiom, Ernährung oder Medikamentengabe Einfluss auf die Entwicklung von Parametern des metabolischen Syndroms nehmen. Dabei kommt es zu Veränderungen im parazellulären Raum, durch die ein Influx von bakteriellen Bestandteilen möglich wird. Adipositas und Diabetes sind zudem mit erhöhten Endotoxinspiegeln in der von Endotoxin, z. B. über den TLR4 Rezeptor bekannt sind, ist der genaue Beitrag zu Merkmalen des metabolischen Syndroms noch unklar. Klar ist aber, dass Entzündung und Insulinresistenz erhöht werden können. Auch die Frage nach einem „Gewebs“-Mikrobiom im metabolischen Syndrom kann aufgrund der Datenlage noch nicht eindeutig beantwortet werden, denn obwohl erste Daten bakterielle DNA im Fettgewebe zeigen, gibt es auch gegensätzliche Arbeiten. Ein „Leaky Gut“ ist ein mögliches Merkmal des metabolischen Syndroms, welches zu den beobachteten Phänotypen beiträgt und, u. a. durch die erhöhte Entzündung in einem negativen Feedbackloop die intestinale Permeabilität weiter erhöhen kann.
Abstract
By altering the intestinal permeability factors like the microbiome, diet or medications can impact and shape attributes of the metabolic syndrome. Through changes in the paracellular space an influx of bacterial components becomes possible. Additionally, obesity and diabetes are associated with increased endotoxin levels in the circulation and even bacterial DNA was detected. Although some mechanisms and consequences of endotoxin actions are known (e. g. via TLR4 receptor), the exact contribution to features of the metabolic syndrome are unclear. However, it is evident that inflammation and insulin resistance can be increased. The question about a human tissue microbiome in metabolic syndrome can, due to limited data, not be answered yet. Even though first results show bacterial DNA in adipose tissue, there are also opposing studies. A “leaky gut” is a possible feature of the metabolic syndrome which contributes to its phenotype and can so, e. g. by elevated inflammation, further increase the intestinal permeability in a vicious cycle.
Publication History
Article published online:
02 December 2019
© Georg Thieme Verlag KG
Stuttgart · New York
-
Literatur
- 1 Mazidi M, Rezaie P, Kengne AP. et al. Gut microbiome and metabolic syndrome. Diabetes Metab Syndr 2016; 10 Suppl.1 150-157 doi:10.1016/j.dsx.2016.01.024
- 2 Parekh PJ, Balart LA, Johnson DA. The Influence of the Gut Microbiome on Obesity, Metabolic Syndrome and Gastrointestinal Disease. Clin Transl Gastroenterol 2015; 6: e91 doi:10.1038/ctg.2015.16
- 3 Tilg H, Moschen AR. Microbiota and diabetes: an evolving relationship. Gut 2014; 63: 1513 doi:10.1136/gutjnl-2014-306928
- 4 Ravin HA, Rowley D, Jenkins C. et al. On the absorption of bacterial endotoxin from the gastro-intestinal tract of the normal and shocked animal. J Exp Med 1960; 112: 783-92
- 5 Menzies I. Absorption of Intact Oligosaccharide in Health and Disease. Biochemical Society Transactions 1974; 2: 1042 doi:10.1042/bst0021042
- 6 Bjarnason I, Ward K, Peters T. THE LEAKY GUT OF ALCOHOLISM: POSSIBLE ROUTE OF ENTRY FOR TOXIC COMPOUNDS. Lancet 1984; 323: 179-82
- 7 Heyman M, Abed J, Lebreton C. et al. Intestinal permeability in coeliac disease: insight into mechanisms and relevance to pathogenesis. Gut 2012; 61: 1355-64 doi:10.1136/gutjnl-2011-300327
- 8 Michielan A, D’Incà R. Intestinal Permeability in Inflammatory Bowel Disease: Pathogenesis, Clinical Evaluation, and Therapy of Leaky Gut. Mediators Inflamm 2015 2015; 628157 doi:10.1155/2015/628157
- 9 Bischoff SC, Barbara G, Buurman W. et al. Intestinal permeability – a new target for disease prevention and therapy. BMC Gastroenterol 2014; 14: 189 doi:10.1186/s12876-014-0189-7
- 10 Steed E, Balda MS, Matter K. Dynamics and functions of tight junctions. Trends Cell Biol 2010; 20: 142-9 doi:10.1016/j.tcb.2009.12.002
- 11 Hu Y-J, Wang Y-D, Tan F-Q. et al. Regulation of paracellular permeability: factors and mechanisms. Mol Biol Rep 2013; 40: 6123-42 doi:10.1007/s11033-013-2724-y
- 12 Williams JM, Duckworth CA, Burkitt MD. et al. Epithelial cell shedding and barrier function: a matter of life and death at the small intestinal villus tip. Vet Pathol 2015; 52: 445-55
- 13 Dean P, Kenny B. Intestinal barrier dysfunction by enteropathogenic Escherichia coli is mediated by two effector molecules and a bacterial surface protein. Mol Microbiol 2004; 54: 665-75 doi:10.1111/j.1365-2958.2004.04308.x
- 14 Viswanathan VK, Koutsouris A, Lukic S. et al. Comparative analysis of EspF from enteropathogenic and enterohemorrhagic Escherichia coli in alteration of epithelial barrier function. Infect Immun 2004; 72: 3218-27 doi:10.1128/IAI.72.6.3218-3227.2004
- 15 Kaper JB, Nataro JP, Mobley HL. Pathogenic Escherichia coli. Nature reviews. Microbiology 2004; 2: 123-40 doi:10.1038/nrmicro818
- 16 Caron TJ, Scott KE, Fox JG. et al. Tight junction disruption: Helicobacter pylori and dysregulation of the gastric mucosal barrier. World J Gastroenterol 2015; 21: 11411-27
- 17 Tafazoli F, Magnusson K-E, Zheng L. Disruption of epithelial barrier integrity by Salmonella enterica serovar typhimurium requires geranylgeranylated proteins. Infect Immun 2003; 71: 872-81
- 18 Fasano A, Baudry B, Pumplin DW. et al. Vibrio cholerae produces a second enterotoxin, which affects intestinal tight junctions. Proc Natl Acad Sci U S A 1991; 88: 5242-6
- 19 Martinez-Medina M, Denizot J, Dreux N. et al. Western diet induces dysbiosis with increased E coli in CEABAC10 mice, alters host barrier function favouring AIEC colonisation. Gut 2014; 63: 116 doi:10.1136/gutjnl-2012-304119
- 20 Moreira APB, Texeira TFS, Ferreira AB. et al. Influence of a high-fat diet on gut microbiota, intestinal permeability and metabolic endotoxaemia. British Journal of Nutrition 2012; 108: 801-9
- 21 Wang Y, Tong J, Chang B. et al. Effects of alcohol on intestinal epithelial barrier permeability and expression of tight junction-associated proteins. Mol Med Rep 2014; 9: 2352-6 doi:10.3892/mmr.2014.2126
- 22 Lammers KM, Lu R, Brownley J. et al. Gliadin induces an increase in intestinal permeability and zonulin release by binding to the chemokine receptor CXCR3. Gastroenterology 2008; 135: 194-204 e3 doi:10.1053/j.gastro.2008.03.023
- 23 Kerckhoffs APM, Akkermans LMA, de Smet MB. et al. Intestinal permeability in irritable bowel syndrome patients: effects of NSAIDs. Dig Dis Sci 2010; 55: 716-23 doi:10.1007/s10620-009-0765-9
- 24 Mullin JM, Valenzano MC, Whitby M. et al. Esomeprazole induces upper gastrointestinal tract transmucosal permeability increase. Aliment Pharmacol Ther 2008; 28: 1317-25 doi:10.1111/j.1365-2036.2008.03824.x
- 25 Peng L, Li Z-R, Green RS. et al. Butyrate Enhances the Intestinal Barrier by Facilitating Tight Junction Assembly via Activation of AMP-Activated Protein Kinase in Caco-2 Cell Monolayers. J Nutr 2009; 139: 1619-25
- 26 Ohata A, Usami M, Miyoshi M. Short-chain fatty acids alter tight junction permeability in intestinal monolayer cells via lipoxygenase activation. Nutrition 2005; 21: 838-47 doi:10.1016/j.nut.2004.12.004
- 27 Ussing HH, Zerahn K. Active transport of sodium as the source of electric current in the short-circuited isolated frog skin. Acta Physiol Scand 1951; 23: 110-27 doi:10.1111/j.1748-1716.1951.tb00800.x
- 28 Li H, Sheppard DN, Hug MJ. Transepithelial electrical measurements with the Ussing chamber. Journal of Cystic Fibrosis 2004; 3: 123-6 doi:10.1016/j.jcf.2004.05.026
- 29 Galipeau HJ, Verdu EF. The complex task of measuring intestinal permeability in basic and clinical science. Neurogastroenterol Motil 2016; 28: 957-65 doi:10.1111/nmo.12871
- 30 Wang L, Llorente C, Hartmann P. et al. Methods to determine intestinal permeability and bacterial translocation during liver disease. J Immunol Methods 2015; 421: 44-53 doi:10.1016/j.jim.2014.12.015
- 31 Wang W, Uzzau S, Goldblum SE. et al. Human zonulin, a potential modulator of intestinal tight junctions. J Cell Sci 2000; 113: 4435-40
- 32 Tripathi A, Lammers KM, Goldblum S. et al. Identification of human zonulin, a physiological modulator of tight junctions, as prehaptoglobin-2. Proc Natl Acad Sci USA 2009; 106: 16799-804 doi:10.1073/pnas.0906773106
- 33 Moreno-Navarrete JM, Sabater M, Ortega F. et al. Circulating zonulin, a marker of intestinal permeability, is increased in association with obesity-associated insulin resistance. PLoS One 2012; 7: e37160 doi:10.1371/journal.pone.0037160
- 34 Zhang D, Zhang L, Zheng Y. et al. Circulating zonulin levels in newly diagnosed Chinese type 2 diabetes patients. Diabetes Res Clin Pract 2014; 106: 312-8 doi:10.1016/j.diabres.2014.08.017
- 35 Żak-Gołąb A, Kocełak P, Aptekorz M. et al. Gut Microbiota, Microinflammation, Metabolic Profile, and Zonulin Concentration in Obese and Normal Weight Subjects. International Journal of Endocrinology 2013 2013; 9
- 36 Sapone A, Magistris L de, Pietzak M. et al. Zonulin upregulation is associated with increased gut permeability in subjects with type 1 diabetes and their relatives. Diabetes 2006; 55: 1443-9
- 37 Scheffler L, Crane A, Heyne H. et al. Widely Used Commercial ELISA Does Not Detect Precursor of Haptoglobin2, but Recognizes Properdin as a Potential Second Member of the Zonulin Family. Front Endocrinol 2018; 9: 22 doi:10.3389/fendo.2018.00022
- 38 König J, Wells J, Cani PD. et al. Human Intestinal Barrier Function in Health and Disease. Clinical And Translational Gastroenterology 2016; 7: e196
- 39 Lam YY, Ha CWY, Campbell CR. et al. Increased Gut Permeability and Microbiota Change Associate with Mesenteric Fat Inflammation and Metabolic Dysfunction in Diet-Induced Obese Mice. PLoS One 2012; 7: e34233
- 40 Cani PD, Possemiers S, Van de Wiele. et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut 2009; 58: 1091-103 doi:10.1136/gut.2008.165886
- 41 Brun P, Castagliuolo I, Di Leo V. et al. Increased intestinal permeability in obese mice: new evidence in the pathogenesis of nonalcoholic steatohepatitis. Am J Physiol Gastrointest Liver Physiol 2007; 292: G518-25 doi:10.1152/ajpgi.00024.2006
- 42 Teixeira TFS, Souza NCS, Chiarello PG. et al. Intestinal permeability parameters in obese patients are correlated with metabolic syndrome risk factors. Clin Nutr 2012; 31: 735-40 doi:10.1016/j.clnu.2012.02.009
- 43 Damms-Machado A, Louis S, Schnitzer A. et al. Gut permeability is related to body weight, fatty liver disease, and insulin resistance in obese individuals undergoing weight reduction. Am J Clin Nutr 2017; 105: 127-35 doi:10.3945/ajcn.116.131110
- 44 Ott B, Skurk T, Hastreiter L. et al. Effect of caloric restriction on gut permeability, inflammation markers, and fecal microbiota in obese women. Sci Rep 2017; 7: 11955 doi:10.1038/s41598-017-12109-9
- 45 Luther J, Garber JJ, Khalili H. et al. Hepatic Injury in Nonalcoholic Steatohepatitis Contributes to Altered Intestinal Permeability. Cellular and Molecular Gastroenterology and Hepatology 2015; 1: 222-232 e2 doi:10.1016/j.jcmgh.2015.01.001
- 46 Kitchens RL, Thompson PA. Modulatory effects of sCD14 and LBP on LPS-host cell interactions. J Endotoxin Res 2005; 11: 225-9 doi:10.1179/096805105X46565
- 47 Harte AL, Varma MC, Tripathi G. et al. High fat intake leads to acute postprandial exposure to circulating endotoxin in type 2 diabetic subjects. Diabetes Care 2012; 35: 375-82 doi:10.2337/dc11-1593
- 48 Erridge C, Attina T, Spickett CM. et al. A high-fat meal induces low-grade endotoxemia: evidence of a novel mechanism of postprandial inflammation. Am J Clin Nutr 2007; 86: 1286-92 doi:10.1093/ajcn/86.5.1286
- 49 Pussinen PJ, Havulinna AS, Lehto M. et al. Endotoxemia is associated with an increased risk of incident diabetes. Diabetes Care 2011; 34: 392-7 doi:10.2337/dc10-1676
- 50 Cox AJ, Zhang P, Bowden DW. et al. Increased intestinal permeability as a risk factor for type 2 diabetes. Diabetes & Metabolism 2017; 43: 163-6
- 51 Monte SV, Caruana JA, Ghanim H. et al. Reduction in endotoxemia, oxidative and inflammatory stress, and insulin resistance after Roux-en-Y gastric bypass surgery in patients with morbid obesity and type 2 diabetes mellitus. Surgery 2012; 151: 587-93 doi:10.1016/j.surg.2011.09.038
- 52 Lassenius MI, Pietilainen KH, Kaartinen K. et al. Bacterial endotoxin activity in human serum is associated with dyslipidemia, insulin resistance, obesity, and chronic inflammation. Diabetes Care 2011; 34: 1809-15 doi:10.2337/dc10-2197
- 53 Harte AL, da Silva NF, Creely SJ. et al. Elevated endotoxin levels in non-alcoholic fatty liver disease. J Inflamm 2010; 7: 15 doi:10.1186/1476-9255-7-15
- 54 Boutagy NE, McMillan RP, Frisard MI. et al. Metabolic endotoxemia with obesity: Is it real and is it relevant?. Biochimie 2016; 124: 11-20 doi:10.1016/j.biochi.2015.06.020
- 55 Amar J, Lange C, Payros G. et al. Blood Microbiota Dysbiosis Is Associated with the Onset of Cardiovascular Events in a Large General Population: The D.E.S.I.R. Study. PLoS One 2012; 8: e54461 doi:10.1371/journal.pone.0054461
- 56 Ortiz S, Zapater P, Estrada JL. et al. Bacterial DNA translocation holds increased insulin resistance and systemic inflammatory levels in morbid obese patients. J Clin Endocrinol Metab 2014; 99: 2575-83 doi:10.1210/jc.2013-4483
- 57 Sato J, Kanazawa A, Ikeda F. et al. Gut dysbiosis and detection of “live gut bacteria” in blood of Japanese patients with type 2 diabetes. Diabetes Care 2014; 37: 2343-50 doi:10.2337/dc13-2817
- 58 Lelouvier B, Servant F, Paisse S. et al. Changes in blood microbiota profiles associated with liver fibrosis in obese patients: A pilot analysis. Hepatology 2016; 64: 2015-27 doi:10.1002/hep.28829
- 59 Zwick RK, Guerrero-Juarez CF, Horsley V. Anatomical, Physiological, and Functional Diversity of Adipose Tissue. Cell Metab 2018; 27: 68-83 doi:10.1016/j.cmet.2017.12.002
- 60 Amar J, Chabo C, Waget A. et al. Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes: Molecular mechanisms and probiotic treatment. EMBO Mol Med 2011; 3: 559-72 doi:10.1002/emmm.201100159
- 61 Burcelin R, Serino M, Chabo C. et al. Metagenome and metabolism: the tissue microbiota hypothesis. Diabetes Obes Metab 2013; 15 Suppl.3 61-70 doi:10.1111/dom.12157
- 62 Zulian A, Cancello R, Cesana E. et al. Adipose tissue microbiota in humans: An open issue. Int J Obes (Lond) 2016; 40: 1643-8 doi:10.1038/ijo.2016.111
- 63 Creely SJ, McTernan PG, Kusminski CM. et al. Lipopolysaccharide activates an innate immune system response in human adipose tissue in obesity and type 2 diabetes. Am J Physiol Endocrinol Metab 2007; 292: E740-7 doi:10.1152/ajpendo.00302.2006
- 64 Vitseva OI, Tanriverdi K, Tchkonia TT. et al. Inducible Toll-like receptor and NF-kappaB regulatory pathway expression in human adipose tissue. Obesity 2008; 16: 932-7 doi:10.1038/oby.2008.25
- 65 Rocha DM, Caldas AP, Oliveira LL. et al. Saturated fatty acids trigger TLR4-mediated inflammatory response. Atherosclerosis 2016; 244: 211-5 doi:10.1016/j.atherosclerosis.2015.11.015
- 66 Kheder RK, Hobkirk J, Stover CM. In vitro Modulation of the LPS-Induced Proinflammatory Profile of Hepatocytes and Macrophages- Approaches for Intervention in Obesity?. Frontiers in cell and developmental biology 2016; 4: 61
- 67 Vives-Pi M, Somoza N, Fernández-Alvarez J. et al. Evidence of expression of endotoxin receptors CD14, toll-like receptors TLR4 and TLR2 and associated molecule MD-2 and of sensitivity to endotoxin (LPS) in islet beta cells. Clinical and experimental immunology 2003; 133: 208-18
- 68 Amyot J, Semache M, Ferdaoussi M. et al. Lipopolysaccharides impair insulin gene expression in isolated islets of Langerhans via Toll-Like Receptor-4 and NF-kappaB signalling. PLoS One 2012; 7: e36200 doi:10.1371/journal.pone.0036200
- 69 Jialal I, Kaur H, Devaraj S. Toll-like Receptor Status in Obesity and Metabolic Syndrome: A Translational Perspective. J Clin Endocrinol Metab 2014; 99: 39-48 doi:10.1210/jc.2013-3092
- 70 Satoh M, Ando S, Shinoda T. et al. Clearance of bacterial lipopolysaccharides and lipid A by the liver and the role of arginino-succinate synthase. Innate Immunity 2008; 14: 51-60 doi:10.1177/1753425907087267
- 71 Minasyan H. Mechanisms and pathways for the clearance of bacteria from blood circulation in health and disease. Pathophysiology 2016; 23: 61-6 doi:10.1016/j.pathophys.2016.03.001
- 72 Forner L, Larsen T, Kilian M. et al. Incidence of bacteremia after chewing, tooth brushing and scaling in individuals with periodontal inflammation. J Clin Periodontol 2006; 33: 401-7 doi:10.1111/j.1600-051X.2006.00924.x
- 73 Parahitiyawa NB, Jin LJ, Leung WK. et al. Microbiology of odontogenic bacteremia: beyond endocarditis. Clin Microbiol Rev 2009; 22: 46-64 Table of Contents doi:10.1128/CMR.00028-08
- 74 Chaffee BW, Weston SJ. Association between chronic periodontal disease and obesity: a systematic review and meta-analysis. J Periodontol 2010; 81: 1708-24 doi:10.1902/jop.2010.100321
- 75 Franchini R, Petri A, Migliario M. et al. Poor oral hygiene and gingivitis are associated with obesity and overweight status in paediatric subjects. J Clin Periodontol 2011; 38: 1021-8 doi:10.1111/j.1600-051X.2011.01770.x
- 76 Nakatsuji T, Chiang H-I, Jiang SB. et al. The microbiome extends to subepidermal compartments of normal skin. Nature communications 2013; 4: 1431 doi:10.1038/ncomms2441
- 77 Salter SJ, Cox MJ, Turek EM. et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biology 2014; 12: 87 doi:10.1186/s12915-014-0087-z