Nuklearmedizin 2019; 58(05): 387-394
DOI: 10.1055/a-0974-3767
Original Article
© Georg Thieme Verlag KG Stuttgart · New York

Induction and rejoining of DNA double-strand breaks in the lymphocytes of prostate cancer patients after radium-223 treatment as assessed by the γH2AX foci assay

Induktion und Reparatur von DNA-Doppelstrangbrüchen in Lymphozyten von Prostatakarzinom-Patienten nach Ra-223 Behandlung: Quantifizierung der DSB-assoziierten γH2AX Foci
Roswitha Runge
University Hospital/Faculty of Medicine, Technical University Dresden, Department of Nuclear Medicine, Dresden, Germany
,
Liane Oehme
University Hospital/Faculty of Medicine, Technical University Dresden, Department of Nuclear Medicine, Dresden, Germany
,
Sabine Grosche-Schlee
University Hospital/Faculty of Medicine, Technical University Dresden, Department of Nuclear Medicine, Dresden, Germany
,
Anja Braune
University Hospital/Faculty of Medicine, Technical University Dresden, Department of Nuclear Medicine, Dresden, Germany
,
Robert Freudenberg
University Hospital/Faculty of Medicine, Technical University Dresden, Department of Nuclear Medicine, Dresden, Germany
,
Jörg Kotzerke
University Hospital/Faculty of Medicine, Technical University Dresden, Department of Nuclear Medicine, Dresden, Germany
› Author Affiliations
Further Information

Publication History

05 June 2019

10 July 2019

Publication Date:
06 August 2019 (online)

Abstract

Aim The aim of this study is to assess if the number of radiation-induced double strand breaks (DSB) in lymphocytes of prostate cancer patients is affected after repeated Ra-223 therapies. In addition, we investigated the repair of ex vivo induced DSB to investigate the repair proficiency in patient’s lymphocytes over the therapy course.

Methods Before each of six therapy cycles, blood samples were obtained from seventeen patients. After separation of lymphocytes, the cells were subjected to immunofluorescence staining for detection of DSB-marking γH2AX foci. The number of foci per cell per patient sample was determined for each cycle (X1-X6, baseline foci per cell). Additionally, appropriate samples were exposed ex vivo to an X-ray dose of 1 Gy. The number of γH2AX foci per cell were analyzed after 0.5 h, 2 h and 24 h of recovery.

Results Patient-specific linear regression of the baseline foci per cell over the therapy cycles revealed no significant slopes in the regression lines. Likewise, the mean baseline foci per cell of all patients for cycles X2-X6 was not significantly elevated in comparison to the pre-therapeutic value (X1). The differences between the percentages of residual DSB and cycles were not significant, both at 2 h and 24 h repair time. Consideration of the X6/X1 ratios of both the number of lymphocytes and the amount of residual damage at 24 h indicated a significant correlation.

Conclusion Our findings indicate that the number of γH2AX foci per cell was not changed in dependence on the Ra-223 therapy cycles. The ability of patient’s lymphocytes to repair ex vivo induced DSB remained unaffected throughout the entire therapy course.

Zusammenfassung

Ziel Das Ziel dieser Studie ist die Analyse von strahleninduzierten Doppelstrangbrüchen (DSB) in Lymphozyten von Prostatakarzinompatienten im Verlauf der sechs Ra-223 Therapiezyklen (X1-X6). Die Reparaturkapazität der Lymphozyten wurde nach Applikation einer ex vivo Bestrahlung mit 1 Gy Röntgenstrahlung evaluiert.

Methoden Von 17 Patienten wurden vor jedem Therapiezyklus (X1-X6) Blutproben entnommen, die Lymphozyten isoliert und die DSB-assoziierten γH2AX Foci pro Zelle (Basiswerte) mit Immunfluoreszenzfärbung detektiert. Weiterhin wurden die entsprechenden Lymphozytenproben ex vivo mit 1 Gy Röntgenstrahlung bestrahlt und nach 0,5 h, 2 h und 24 h Reparaturzeit die γH2AX Foci pro Zelle bestimmt.

Ergebnisse Die Analyse der γH2AX Basiswerte für die einzelnen Patienten zeigte keine signifikanten Anstiege im Therapieverlauf. Die gemittelten γH2AX Basiswerte der Zyklen X2-X6 waren im Vergleich zum prätherapeutischen Wert (X1) nicht signifikant erhöht. Ein signifikanter Einfluss wiederholter Ra-223 Therapien auf die Reparatur ex vivo erzeugter DSB konnte nicht gefunden werden. Die Relation der Lymphozytenanzahl (X6/X1) korreliert mit der Relation residualer DSB (X6/X1) nach 24 h Reparaturzeit.

Schlussfolgerung Wiederholt applizierte Ra-223 Therapien zeigten mit dem verwendeten γH2AX Assay als DSB-Marker weder Auswirkungen auf die Basiswerte noch auf das Reparaturvermögen ex vivo induzierter DSB in Lymphozyten der Prostatakarzinom-Patienten.

 
  • References

  • 1 Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin 2016; 66: 7-30 doi:10.3322/caac.21332
  • 2 Aghevlian S, Boyle AJ, Reilly RM. Radioimmunotherapy of cancer with high linear energy transfer (LET) radiation delivered by radionuclides emitting alpha-particles or Auger electrons. Adv Drug Deliv Rev 2017; 109: 102-118 doi:10.1016/j.addr.2015.12.003
  • 3 Pandit-Taskar N, Larson SM, Carrasquillo JA. Bone-seeking radiopharmaceuticals for treatment of osseous metastases, Part 1: alpha therapy with 223Ra-dichloride. J Nucl Med 2014; 55: 268-274 doi:10.2967/jnumed.112.112482
  • 4 Parker C, Nilsson S, Heinrich D. et al. Alpha emitter radium-223 and survival in metastatic prostate cancer. N Engl J Med 2013; 369: 213-223 doi:10.1056/NEJMoa1213755
  • 5 Khanna KK, Jackson SP. DNA double-strand breaks: signaling, repair and the cancer connection. Nat Genet 2001; 27: 247-254 doi:10.1038/85798
  • 6 Cline SD, Hanawalt PC. Who’s on first in the cellular response to DNA damage?. Nat Rev Mol Cell Biol 2003; 4: 361-372 doi:10.1038/nrm1101
  • 7 Burma S, Chen BP, Murphy M. et al. ATM phosphorylates histone H2AX in response to DNA double-strand breaks. J Biol Chem 2001; 276: 42462-42467 doi:10.1074/jbc.C100466200
  • 8 Celeste A, Fernandez-Capetillo O, Kruhlak MJ. et al. Histone H2AX phosphorylation is dispensable for the initial recognition of DNA breaks. Nat Cell Biol 2003; 5: 675-679 doi:10.1038/ncb1004
  • 9 Rogakou EP, Pilch DR, Orr AH. et al. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 1998; 273: 5858-5868
  • 10 Keogh MC, Kim JA, Downey M. et al. A phosphatase complex that dephosphorylates gammaH2AX regulates DNA damage checkpoint recovery. Nature 2006; 439: 497-501 doi:10.1038/nature04384
  • 11 Lobrich M, Kiefer J. Assessing the likelihood of severe side effects in radiotherapy. Int J Cancer 2006; 118: 2652-2656 doi:10.1002/ijc.21782
  • 12 Menegakis A, Yaromina A, Eicheler W. et al. Prediction of clonogenic cell survival curves based on the number of residual DNA double strand breaks measured by gammaH2AX staining. Int J Radiat Biol 2009; 85: 1032-1041 doi:10.3109/09553000903242149
  • 13 Lobrich M, Rief N, Kuhne M. et al. In vivo formation and repair of DNA double-strand breaks after computed tomography examinations. Proc Natl Acad Sci U S A 2005; 102: 8984-8989 doi:10.1073/pnas.0501895102
  • 14 Rief M, Hartmann L, Geisel D. et al. DNA double-strand breaks in blood lymphocytes induced by two-day (99 m)Tc-MIBI myocardial perfusion scintigraphy. Eur Radiol 2018; 28: 3075-3081 doi:10.1007/s00330–017–5239–4
  • 15 Lassmann M, Hanscheid H, Gassen D. et al. In vivo formation of gamma-H2AX and 53BP1 DNA repair foci in blood cells after radioiodine therapy of differentiated thyroid cancer. J Nucl Med 2010; 51: 1318-1325 doi:10.2967/jnumed.109.071357
  • 16 Eberlein U, Nowak C, Bluemel C. et al. DNA damage in blood lymphocytes in patients after (177)Lu peptide receptor radionuclide therapy. Eur J Nucl Med Mol Imaging 2015; 42: 1739-1749 doi:10.1007/s00259–015–3083–9
  • 17 Eberlein U, Scherthan H, Bluemel C. et al. DNA Damage in Peripheral Blood Lymphocytes of Thyroid Cancer Patients After Radioiodine Therapy. J Nucl Med 2016; 57: 173-179 doi:10.2967/jnumed.115.164814
  • 18 Barsegian V, Hueben C, Mueller SP. et al. Impairment of lymphocyte function following yttrium-90 DOTATOC therapy. Cancer immunology. immunotherapy : CII 2015; 64: 755-764 doi:10.1007/s00262–015–1687–3
  • 19 Barsegian V, Muller SP, Mockel D. et al. Lymphocyte function following radium-223 therapy in patients with metastasized, castration-resistant prostate cancer. Eur J Nucl Med Mol Imaging 2017; 44: 242-246 doi:10.1007/s00259–016–3536–9
  • 20 Strosberg J, El-Haddad G, Wolin E. et al. Phase 3 Trial of (177)Lu-Dotatate for Midgut Neuroendocrine Tumors. N Engl J Med 2017; 376: 125-135 doi:10.1056/NEJMoa1607427
  • 21 Rothkamm K, Beinke C, Romm H. et al. Comparison of established and emerging biodosimetry assays. Radiat Res 2013; 180: 111-119 doi:10.1667/RR3231.1
  • 22 Runge R, Hiemann R, Wendisch M. et al. Fully automated interpretation of ionizing radiation-induced gammaH2AX foci by the novel pattern recognition system AKLIDES(R). Int J Radiat Biol 2012; 88: 439-447 doi:10.3109/09553002.2012.658468
  • 23 Schumann S, Eberlein U, Muhtadi R. et al. DNA damage in leukocytes after internal ex-vivo irradiation of blood with the alpha-emitter Ra-223. Sci Rep 2018; 8: 2286 doi:10.1038/s41598–018–20364–7
  • 24 Schumann S, Eberlein U, Muller J. et al. Correlation of the absorbed dose to the blood and DNA damage in leukocytes after internal ex-vivo irradiation of blood samples with Ra-224. EJNMMI Res 2018; 8: 77 doi:10.1186/s13550–018–0422–4
  • 25 Scherthan H, Hieber L, Braselmann H. et al. Accumulation of DSBs in gamma-H2AX domains fuel chromosomal aberrations. Biochem Biophys Res Commun 2008; 371: 694-697 doi:10.1016/j.bbrc.2008.04.127
  • 26 Redon CE, Dickey JS, Bonner WM. et al. γ-H2AX as a biomarker of DNA damage induced by ionizing radiation in human peripheral blood lymphocytes and artificial skin. Advances in space research : the official journal of the Committee on Space Research 2009; 43: 1171-1178 doi:10.1016/j.asr.2008.10.011
  • 27 Chua ML, Somaiah N, A’Hern R. et al. Residual DNA and chromosomal damage in ex vivo irradiated blood lymphocytes correlated with late normal tissue response to breast radiotherapy. Radiother Oncol 2011; 99: 362-366 doi:10.1016/j.radonc.2011.05.071
  • 28 Rube CE, Fricke A, Schneider R. et al. DNA repair alterations in children with pediatric malignancies: novel opportunities to identify patients at risk for high-grade toxicities. Int J Radiat Oncol Biol Phys 2010; 78: 359-369 doi:10.1016/j.ijrobp.2009.08.052
  • 29 Schuler N, Palm J, Kaiser M. et al. DNA-damage foci to detect and characterize DNA repair alterations in children treated for pediatric malignancies. PLoS One 2014; 9: e91319 doi:10.1371/journal.pone.0091319
  • 30 van Oorschot B, Hovingh SE, Moerland PD. et al. Reduced activity of double-strand break repair genes in prostate cancer patients with late normal tissue radiation toxicity. Int J Radiat Oncol Biol Phys 2014; 88: 664-670 doi:10.1016/j.ijrobp.2013.11.219
  • 31 Kratochwil C, Bruchertseifer F, Giesel FL. et al. 225Ac-PSMA-617 for PSMA-Targeted alpha-Radiation Therapy of Metastatic Castration-Resistant Prostate Cancer. J Nucl Med 2016; 57: 1941-1944 doi:10.2967/jnumed.116.178673
  • 32 Kratochwil C, Giesel FL, Bruchertseifer F. et al. (2)(1)(3)Bi-DOTATOC receptor-targeted alpha-radionuclide therapy induces remission in neuroendocrine tumours refractory to beta radiation: a first-in-human experience. Eur J Nucl Med Mol Imaging 2014; 41: 2106-2119 doi:10.1007/s00259–014–2857–9
  • 33 van Oorschot B, Hovingh S, Dekker A. et al. Predicting Radiosensitivity with Gamma-H2AX Foci Assay after Single High-Dose-Rate and Pulsed Dose-Rate Ionizing Irradiation. Radiat Res 2016; 185: 190-198 doi:10.1667/RR14098.1