Subscribe to RSS
DOI: 10.1055/a-0983-0349
Pathologisch-genetisch orientierte Diabetes-Reklassifizierung
Reclassification of diabetes mellitus based on pathophysiologic and genetic featuresAbstract
Diabetes mellitus has been defined by hyperglycemia, but in addition to hyperglycemia, there are several other factors determining the clinical course and complications. We review the current classification of diabetes and recent attempts to identify new subphenotypes. Notably, there are anthropometry-pathophysiology based and genome-based subphenotyping approaches. They aim to improve the prediction of disease course and complications and could pave the way for precision medicine in the therapy of diabetes.
Die pathologisch-genetisch orientierte Reklassifizierung des Diabetes-Krankheitsspektrums liefert die Basis für eine Präzisionsmedizin, deren Konzept eine auf den einzelnen Patienten zugeschnittene Therapie zum Ziel hat. Die unterschiedlichen Subphänotypen des Diabetes mellitus könnten durch Präzisionsmedizin wahrscheinlich besser behandelt werden. Entsprechende Einteilungen wurden nun vorgelegt.
Schlüsselwörter
Insulinresistenz - Endokrinologie - Diabetes mellitus - targeted Therapy - personalisierte Medizin - Suphänotypisierung - Klassifikation - Cluster - Pathophysiologie - GenetikKey words
diabetes - type 2 diabetes - insulin resistance - insulin secretion - personalised medicine - precision medicine - subphenotyping - classification - clustering - pathophysiology - geneticsPublication History
Article published online:
29 April 2020
© Georg Thieme Verlag KG
Stuttgart · New York
-
Literatur
- 1 Fowler MJ. Microvascular and Macrovascular Complications of Diabetes. Clin Diabetes 2008; 26: 77-82
- 2 Duckworth W, Abraira C, Moritz T. et al. Glucose control and vascular complications in veterans with type 2 diabetes. N Engl J Med 2009; 360: 129-139
- 3 Patel A, MacMahon S. ADVANCE Collaborative Group. et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med 2008; 358: 2560-2572
- 4 Gerstein HC, Miller ME. Action to Control Cardiovascular Risk in Diabetes Study Group. et al. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med 2008; 358: 2545-2559
- 5 Davidson MB. Diagnosing diabetes with glucose criteria: worshipping a false god. Diabetes Care 2011; 34: 524-526
- 6 Hodson R. Precision medicine. Nature 2016; 537: S49-S49
- 7 Häring HU. Novel phenotypes of prediabetes?. Diabetologia 2016; 59: 1806-1818
- 8 Stefan N, Fritsche A, Schick F. et al. Phenotypes of prediabetes and stratification of cardiometabolic risk. Lancet Diabetes Endocrinol 2016; 4: 789-798
- 9 Stefan N, Staiger H, Wagner R. et al. A high-risk phenotype associates with reduced improvement in glycaemia during a lifestyle intervention in prediabetes. Diabetologia 2015; 58: 1-8
- 10 Li L, Cheng WY, Glicksberg BS. et al. Identification of type 2 diabetes subgroups through topological analysis of patient similarity. Sci Transl Med 2015; 7: 311ra174
- 11 Ahlqvist E, Storm P, Käräjämäki A. et al Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables. Lancet Diabetes Endocrinol; 2018 Im Internet: http://www.thelancet.com/journals/landia/article/PIIS2213–8587(18)30051–2/abstract
- 12 Levy JC, Matthews DR, Hermans MP. Correct homeostasis model assessment (HOMA) evaluation uses the computer program. Diabetes Care 1998; 21: 2191-2192
- 13 Zaharia OP, Strassburger K, Strom A. et al. Risk of diabetes-associated diseases in subgroups of patients with recent-onset diabetes: a 5-year follow-up study. Lancet Diabetes Endocrinol 2019; 7: 684-694
- 14 Thorn LM, Forsblom C, Wadén J. et al. Metabolic Syndrome as a Risk Factor for Cardiovascular Disease, Mortality, and Progression of Diabetic Nephropathy in Type 1 Diabetes. Diabetes Care 2009; 32: 950-952
- 15 Welsh GI, Hale LJ, Eremina V. et al. Insulin signaling to the glomerular podocyte is critical for normal kidney function. Cell Metab 2010; 12: 329-340
- 16 Thamer C, Machann J, Stefan N. et al. High Visceral Fat Mass and High Liver Fat Are Associated with Resistance to Lifestyle Intervention. Obesity 2007; 15: 531-538
- 17 Wagner R, Machann J, Lehmann R. et al. Exercise-induced albuminuria is associated with perivascular renal sinus fat in individuals at increased risk of type 2 diabetes. Diabetologia 2012; 55: 2054-2058
- 18 Wagner R, Machann J, Guthoff M. et al. The protective effect of human renal sinus fat on glomerular cells is reversed by the hepatokine fetuin-A. Sci Rep 2017; 7: 2261
- 19 Dennis JM, Shields BM, Henley WE. et al Disease progression and treatment response in data-driven subgroups of type 2 diabetes compared with models based on simple clinical features: an analysis using clinical trial data. Lancet Diabetes Endocrinol 2019; 7 (06) 442-451 . Im Internet: https://www.thelancet.com/journals/landia/article/PIIS2213-8587(19)30087-7/abstract (Stand: 03.03.2020)
- 20 Stidsen JV, Henriksen JE, Olsen MH. et al. Pathophysiology-based phenotyping in type 2 diabetes: A clinical classification tool. Diabetes Metab Res Rev 2018; 0: e3005
- 21 Chatterjee S, Davies MJ. Accurate diagnosis of diabetes mellitus and new paradigms of classification. Nat Rev Endocrinol 2018; 14: 386-387 . Im Internet: https://www.nature.com/articles/s41574-018-0025-1 (Stand: 03.03.2020)
- 22 Franks PW, Merino J. Gene-lifestyle interplay in type 2 diabetes. Curr Opin Genet Dev 2018; 50: 35-40
- 23 Archer E. The Childhood obesity epidemic as a result of nongenetic evolution: the maternal resources hypothesis. Mayo Clin Proc 2015; 90: 77-92
- 24 Almgren P, Lehtovirta M, Isomaa B. et al. Heritability and familiality of type 2 diabetes and related quantitative traits in the Botnia Study. Diabetologia 2011; 54: 2811-2819
- 25 Wagner R, Staiger H. Genetik des Typ-2-Diabetes. Diabetol 2019; 15: 267-277
- 26 Mahajan A, Wessel J, Willems SM. et al. Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes. Nat Genet 2018; 50: 559
- 27 Shepherd MH, Shields BM, Hudson M. et al. A UK nationwide prospective study of treatment change in MODY: genetic subtype and clinical characteristics predict optimal glycaemic control after discontinuing insulin and metformin. Diabetologia 2018; 61: 2520-2527
- 28 Dotta F, Fondelli C, Di Mario U. Type 1 diabetes mellitus as a polygenic multifactorial disease: immunopathogenic mechanisms of beta-cell destruction. Acta Biomed 2005; 76: 14-18
- 29 Barrett JC, Clayton DG, Concannon P. et al. Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes. Nat Genet 2009; 41: 703-707
- 30 Gloyn AL, Drucker DJ. Precision medicine in the management of type 2 diabetes. Lancet Diabetes Endocrinol 2018; 6, 11: 891-900 . Im Internet: http://www.sciencedirect.com/science/article/pii/S2213858718300524 (Stand: 03.03.2020)
- 31 Torkamani A, Wineinger NE, Topol EJ. The personal and clinical utility of polygenic risk scores. Nat Rev Genet 2018; 19: 581
- 32 Khera AV, Chaffin M, Aragam KG. et al. Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations. Nat Genet 2018; 50: 1219-1224
- 33 Bonifacio E, Beyerlein A, Hippich M. TEDDY Study Group. et al. Genetic scores to stratify risk of developing multiple islet autoantibodies and type 1 diabetes: A prospective study in children. PLoS Med 2018; 15: e1002548
- 34 Oram RA, Patel K, Hill A. et al. A Type 1 Diabetes genetic risk score can aid discrimination between type 1 and type 2 diabetes in young adults. Diabetes Care 2016; 39: 337-344
- 35 Thomas NJ, Jones SE, Weedon MN. et al Frequency and phenotype of type 1 diabetes in the first six decades of life: a cross-sectional, genetically stratified survival analysis from UK Biobank. Lancet Diabetes Endocrinol 2017; 6 (02) 122-129 . Im Internet: https://www.sciencedirect.com/science/article/pii/S2213858717303625 (Stand: 03.03.2020)
- 36 Johnson MB, Patel KA, De Franco E. et al. A type 1 diabetes genetic risk score can discriminate monogenic autoimmunity with diabetes from early-onset clustering of polygenic autoimmunity with diabetes. Diabetologia 2018; 61: 862-869
- 37 Wagner R, Häring HU, Fritsche A. Phänotypen des Prädiabetes und des Typ-2-Diabetes. Dtsch Med Wochenschr 2014; 139: 1109-1113
- 38 Udler MS, Kim J, von Grotthuss M. et al. Type 2 diabetes genetic loci informed by multi-trait associations point to disease mechanisms and subtypes: A soft clustering analysis. PLoS Med 2018; 15: e1002654
- 39 Ji Y, Yiorkas AM, Frau F. et al. Genome-wide and abdominal MRI data provide evidence that a genetically determined favorable adiposity phenotype is characterized by lower ectopic liver fat and lower risk of type 2 diabetes, heart disease, and hypertension. Diabetes 2019; 68: 207-219
- 40 World Health Organization. Classification of diabetes mellitus 2019. https://apps.who.int/iris/bitstream/handle/10665/325182/9789241515702-eng.pdf?sequence=1&isAllowed=y