Nuklearmedizin 2019; 58(05): 363-370
DOI: 10.1055/a-0985-3954
Original Article
© Georg Thieme Verlag KG Stuttgart · New York

Minimal-activity PET/CT for efficacy control after SIRT (MAPECSI) – clinical implementation of a resource-saving, liver-focused protocol

Minimal-Aktivitäts-PET/CT zur Kontrolle des Therapieansprechens nach SIRT – klinische Implementierung eines ressourcensparenden, leberzentrierten Protokolls
Falk Gühne
Jena University Hospital, Clinic of Nuclear Medicine, Jena, Germany
,
Robert Drescher
Jena University Hospital, Clinic of Nuclear Medicine, Jena, Germany
,
Philipp Seifert
Jena University Hospital, Clinic of Nuclear Medicine, Jena, Germany
,
Martin Freesmeyer
Jena University Hospital, Clinic of Nuclear Medicine, Jena, Germany
› Author Affiliations
Further Information

Publication History

21 June 2019

26 July 2019

Publication Date:
14 August 2019 (online)

Abstract

Aim SIRT is an established treatment option for liver malignancies. Metabolic information can provide additional knowledge about tumoral characteristics and treatment response. FDG-PET/CT was shown to be advantageous for pre-/post-SIRT evaluation. However, whole-body PET/CT is an elaborate procedure. The aim of the study was to optimize clinical efficacy assessment after SIRT with a low-dose, low-cost protocol for focused diagnostic work-up.

Methods An abdomen-only minimal-activity FDG-PET/CT protocol (MA-PET) was established as an alternative for clinically indicated whole-body PET/CT scans. After administering 40 MBq of F-18-FDG one bed position was scanned for 15 minutes. Scans were acquired before (initial scan), one month after (interim scan) and three months after SIRT (follow-up scan). Metabolic tumor activity was evaluated and was compared to standard CT follow-up results.

Results 50 lobar SIRT procedures in 37 patients were analysed. HCC (28), hepatic metastases (15) and CCC (7) were treated. In 18 liver lobes initial MA-PET did not show hypermetabolic lesions, 32 liver lobes underwent interim and follow-up MA-PET. All 114 MA-PET were technically feasible. Mean radiation dose was 1.9 mSv. 64 % of HCC presented low metabolism at baseline, whereas metastases and CCC were all clearly PET-positive. Majority of radiated liver tumors showed at least partial metabolic response. PET/CT results diverged from follow-up CT in 63 % of cases.

Conclusion Minimal-Activity FDG-PET/CT of the liver is a feasible tool for efficacy assessment after SIRT with low financial and radiation burden. It provides additional information to morphologic imaging modalities, which can be helpful in response appraisal and treatment planning.

Zusammenfassung

Ziel Die FDG-PET/CT erwies sich im Rahmen der SIRT als gewinnbringend für die prä- und posttherapeutische Diagnostik. Dennoch wird diese aufgrund des hohen Aufwands häufig nicht angewendet. Ziel unserer Untersuchung war die Optimierung der Therapiekontrolle nach SIRT mittels eines fokussierten, kostensparenden Niedrigdosis-PET-Protokolls.

Methoden Ein Oberbauch-zentriertes, Minimal-Aktivitäts-FDG-PET/CT-Protokoll (MA-PET) wurde für klinisch indizierte Untersuchungen etabliert. Nach Injektion von 40 MBq F-18-FDG wurde eine Bettposition über 15 Minuten akquiriert. Die MA-PET wurden einen Tag vor, einen Monat nach und drei Monate nach SIRT durchgeführt. Das metabolische Therapieansprechen wurde ermittelt und mit der CT-Verlaufskontrolle verglichen.

Ergebnisse 50 lobäre SIRT-Prozeduren, darunter 28 HCC, 15 hepatische Metastasen und 7 CCC, wurden betrachtet. Von 37 eingeschlossenen Patienten erhielten 13 eine zusätzliche SIRT der Gegenseite. Alle Metastasen und CCC waren PET-positiv, 64 % der HCC hingegen initial PET-negativ. 32 Leberlappen mit initial hypermetabolen Läsionen wurden mittels MA-PET verlaufskontrolliert. Alle 114 MA-PET waren technisch durchführbar. Die mittlere Strahlenbelastung pro Untersuchung lag bei 1,9 mSv. Die Mehrheit der Lebertumoren zeigte mindestens ein partielles Therapieansprechen, wobei sich die MA-PET-Ergebnisse in 63 % der Fälle von denen der Standard-CT unterschieden.

Schlussfolgerung MA-PET der Leber ist ein zuverlässiges und geeignetes Verfahren zur Beurteilung der SIRT-Wirksamkeit, mit welchem Strahlenbelastung und Kosten eingespart werden können. Im Vergleich zur morphologischen Bildgebung werden auch mit dem neu etablierten Protokoll zusätzliche Informationen gewonnen, die für Verlaufskontrolle und Therapieplanung nützlich sein können.

 
  • References

  • 1 Bray F, Ferlay J, Soerjomataram I. et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68: 394-424
  • 2 El-Serag HB, Davila JA, Petersen NJ. et al. The continuing increase in the incidence of hepatocellular carcinoma in the United States: an update. Ann Intern Med 2003; 139: 817-823
  • 3 Kasper HU, Drebber U, Dries V. et al. Liver metastases: incidence and histogenesis. Z Gastroenterol 2005; 43: 1149-1157
  • 4 Burkhart RA, Ronnekleiv-Kelly SM, Pawlik TM. Personalized therapy in hepatocellular carcinoma: Molecular markers of prognosis and therapeutic response. Surg Oncol 2017; 26: 138-145
  • 5 Mantravadi RV, Spigos DG, Tan WS. et al. Intraarterial yttrium 90 in the treatment of hepatic malignancy. Radiology 1982; 142: 783-786
  • 6 Salem R, Lewandowski RJ, Mulcahy MF. et al. Radioembolization for hepatocellular carcinoma using Yttrium-90 microspheres: a comprehensive report of long-term outcomes. Gastroenterology 2010; 138: 52-64
  • 7 Sundram FX, Buscombe JR. Selective internal radiation therapy for liver tumours. Clin Med (Lond) 2017; 17: 449-453
  • 8 Hutchings M. Improvements in Imaging of Hodgkin Lymphoma: Positron Emission Tomography. Cancer J 2018; 24: 215-222
  • 9 van Tinteren H, Hoekstra OS, Smit EF. et al. Effectiveness of positron emission tomography in the preoperative assessment of patients with suspected non-small-cell lung cancer: the PLUS multicentre randomised trial. Lancet 2002; 359: 1388-1393
  • 10 Giammarile F, Bodei L, Chiesa C. et al. EANM procedure guideline for the treatment of liver cancer and liver metastases with intra-arterial radioactive compounds. Eur J Nucl Med Mol Imaging 2011; 38: 1393-1406
  • 11 Müller SP, Ezziddin S, Antoch G. et al. Selective intraarterial radiotherapy (SIRT) of malignant liver tumors. Nuklearmedizin 2017; 56: 162-170
  • 12 Annunziata S, Treglia G, Caldarella C. et al. The role of 18F-FDG-PET and PET/CT in patients with colorectal liver metastases undergoing selective internal radiation therapy with yttrium-90: a first evidence-based review. ScientificWorldJournal 2014; 2014: 879469
  • 13 Rosenbaum CE, van den Bosch MA, Veldhuis WB. et al. Added value of FDG-PET imaging in the diagnostic workup for yttrium-90 radioembolisation in patients with colorectal cancer liver metastases. Eur Radiol 2013; 23: 931-937
  • 14 Schmidt GP, Paprottka P, Jakobs TF. et al. FDG-PET-CT and whole-body MRI for triage in patients planned for radioembolisation therapy. Eur J Radiol 2012; 81: e269-276
  • 15 Haug AR. Imaging of primary liver tumors with positron-emission tomography. Q J Nucl Med Mol Imaging 2017; 61: 292-300
  • 16 Sabet A, Ahmadzadehfar H, Bruhman J. et al. Survival in patients with hepatocellular carcinoma treated with 90Y-microsphere radioembolization. Prediction by 18F-FDG PET. Nuklearmedizin 2014; 53: 39-45
  • 17 Turkmen C, Ucar A, Poyanli A. et al. Initial outcome after selective intraarterial radionuclide therapy with yttrium-90 microspheres as salvage therapy for unresectable metastatic liver disease. Cancer Biother Radiopharm 2013; 28: 534-540
  • 18 Sabet A, Ries M, Al-Khalaf Y. et al. Early metabolic response assessment of breast cancer liver metastases: 4-week posttreatment FDG PET predicts survival after 90Y microsphere radioembolization. Nuklearmedizin 2019; 58: 242-248
  • 19 Spadafora M, Evangelista L, Gridelli C. et al. Alternative imaging strategy of solitary pulmonary nodule by FDG PET/CT: Can be imagined a tailored PET?. Eur J Radiol 2017; 90: 188-191
  • 20 Spadafora M, Pace L, Mansi L. Segmental (18)F-FDG-PET/CT in a single pulmonary nodule: a better cost/effectiveness strategy. Eur J Nucl Med Mol Imaging 2017; 44: 1-4
  • 21 Chen MK, Menard 3 rd DH, Cheng DW. Determining the Minimal Required Radioactivity of 18F-FDG for Reliable Semiquantification in PET/CT Imaging: A Phantom Study. J Nucl Med Technol 2016; 44: 26-30
  • 22 Gühne F, Drescher R, Freesmeyer M. Minimal-activity/low-dose PET/CT-a problem-solving tool for uncertain pulmonary PET findings without correlative CT lesions. Jpn J Clin Oncol 2017; 47: 574-575
  • 23 Kalra MK, Woisetschlager M, Dahlstrom N. et al. Radiation dose reduction with Sinogram Affirmed Iterative Reconstruction technique for abdominal computed tomography. J Comput Assist Tomogr 2012; 36: 339-346
  • 24 Soydal C, Kucuk ON, Gecim EI. The prognostic value of quantitative parameters of 18F-FDG PET/CT in the evaluation of response to internal radiation therapy with yttrium-90 in patients with liver metastases of colorectal cancer. Nucl Med Commun 2013; 34: 501-506
  • 25 Haug AR, Tiega Donfack BP, Trumm C. et al. 18F-FDG PET/CT predicts survival after radioembolization of hepatic metastases from breast cancer. J Nucl Med 2012; 53: 371-377
  • 26 Fendler WP, Philippe Tiega DB, Ilhan H. et al. Validation of several SUV-based parameters derived from 18F-FDG PET for prediction of survival after SIRT of hepatic metastases from colorectal cancer. J Nucl Med 2013; 54: 1202-1208
  • 27 Ho CL, Yu SC, Yeung DW. 11C-acetate PET imaging in hepatocellular carcinoma and other liver masses. J Nucl Med 2003; 44: 213-221
  • 28 Yaprak O, Acar S, Ertugrul G. Role of pre-transplant 18F-FDG PET/CT in predicting hepatocellular carcinoma recurrence after liver transplantation. World J Gastrointest Oncol 2018; 10: 336-343
  • 29 Kennedy AS, Coldwell D, Nutting C. et al. Resin 90Y-microsphere brachytherapy for unresectable colorectal liver metastases: modern USA experience. Int J Radiat Oncol Biol Phys 2006; 65: 412-425
  • 30 Lewandowski RJ, Thurston KG, Goin JE. et al. 90Y microsphere (TheraSphere) treatment for unresectable colorectal cancer metastases of the liver: response to treatment at targeted doses of 135–150 Gy as measured by [18 F]fluorodeoxyglucose positron emission tomography and computed tomographic imaging. J Vasc Interv Radiol 2005; 16: 1641-1651
  • 31 Mulcahy MF, Lewandowski RJ, Ibrahim SM. et al. Radioembolization of colorectal hepatic metastases using yttrium-90 microspheres. Cancer 2009; 115: 1849-1858
  • 32 Zerizer I, Al-Nahhas A, Towey D. et al. The role of early (1)(8)F-FDG PET/CT in prediction of progression-free survival after (9)(0)Y radioembolization: comparison with RECIST and tumour density criteria. Eur J Nucl Med Mol Imaging 2012; 39: 1391-1399
  • 33 Gulec SA, Suthar RR, Barot TC. et al. The prognostic value of functional tumor volume and total lesion glycolysis in patients with colorectal cancer liver metastases undergoing 90Y selective internal radiation therapy plus chemotherapy. Eur J Nucl Med Mol Imaging 2011; 38: 1289-1295
  • 34 Wong CY, Salem R, Raman S. et al. Evaluating 90Y-glass microsphere treatment response of unresectable colorectal liver metastases by [18 F]FDG PET: a comparison with CT or MRI. Eur J Nucl Med Mol Imaging 2002; 29: 815-820
  • 35 Kucuk ON, Soydal C, Araz M. et al. Prognostic importance of 18F-FDG uptake pattern of hepatocellular cancer patients who received SIRT. Clin Nucl Med 2013; 38: e283-289
  • 36 Boellaard R, Delgado-Bolton R. et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging 2015; 42: 328-354
  • 37 Samim M, Molenaar IQ, Seesing MF. et al. The diagnostic performance of (18)F-FDG PET/CT, CT and MRI in the treatment evaluation of ablation therapy for colorectal liver metastases: A systematic review and meta-analysis. Surg Oncol 2017; 26: 37-45
  • 38 Dierckx R, Maes A, Peeters M. et al. FDG PET for monitoring response to local and locoregional therapy in HCC and liver metastases. Q J Nucl Med Mol Imaging 2009; 53: 336-342