Subscribe to RSS
DOI: 10.1055/a-0990-3284
Schnelle zelluläre Reaktion und Anpassung an Schwerelosigkeit
Rapid cellular response and adaptation to weightlessnessPublication History
Publication Date:
17 October 2019 (online)
ZUSAMMENFASSUNG
Zelluläre Prozesse werden durch Änderungen der Gravitationskraft in vielfältiger Weise beeinflusst. In unseren Studien konnten wir in verschiedenen zellulären Systemen und in verschiedenen Forschungsplattformen (2D Klinostat, Parabelflüge, suborbitale Forschungsraketen, Internationale Raumstation) nachweisen, dass Reaktionen und Anpassungsprozesse bereits innerhalb von Sekunden bis Minuten nach Beginn der veränderten Schwerkraft auftreten. Diese schnellen Prozesse fanden sich in der Genexpression, der Zellzykluskontrolle, der Signaltransduktion, der Zytoskelettorganisation und des oxidativen Burst. Es stellt sich die Frage nach der Ursache der Transduktion einer unspezifischen Kraft in eine hochspezifische zelluläre Antwort, die in der Spezifität der zellulären Eigenschaften begründet liegen kann. Es ist denkbar, dass die Gravitationskraft der Erde die Chromatinarchitektur und deren Zugänglichkeit stabilisiert und eine homöostatische Bedingung für die Genexpression darstellt. Die Untersuchung mechanobiologischer Mechanismen der Genexpression in Schwerelosigkeit kann die Aufdeckung fundamentaler Prinzipien ermöglichen, wie mechanische Kräfte die Zellfunktion regulieren.
ABSTRACT
Cellular processes are influenced in many ways by changes in gravitational force. In our studies, we were able to demonstrate in various cellular systems and research platforms (2D clinostat, parabolic flights, suborbital research rockets, International Space Station) that reactions and adaptation processes occur within seconds to minutes after the onset of altered gravity. These rapid processes were found in gene expression, cell cycle control, signal transduction, cytoskeletal organization and oxidative burst. The question arises, how a non-specific force such as gravity-induced force, is transduced into a highly specific cellular response. It is conceivable, that Earth’s gravitational force stabilizes chromatin architecture and accessibility and constitutes a homeostatic condition for gene expression. The study of mechanobiological mechanisms of gene expression in weightlessness may allow uncovering of fundamental principles of how mechanical forces regulate cell function.
-
Literatur
- 1 Clément G. Fundamentals of Space Medicine. New York: Springer; 2011
- 2 National Research Council, Division on Engineering and Physical Sciences, Aeronautics and Space Engineering Board, Space Studies Board, Committee for the Decadal Survey on Biological and Physical Sciences in Space. Recapturing a Future for Space Exploration: Life and Physical Sciences Research for a New Era. Washington: National Academies Press; 2012: 99-203
- 3 Hauschild S, Tauber S, Lauber B. et al T cell regulation in microgravity – The current knowledge from in vitro experiments conducted in space, parabolic flights and ground-based facilities. Acta Astronaut 2014; 104: 365-377
- 4 Karin M, Hunter T. Transcriptional control by protein phosphorylation: signal transmission from the cell surface to the nucleus. Curr Biol 1995; 5: 747-757
- 5 Tsang E, Giannetti AM, Shaw D. et al Molecular mechanism of the Syk activation switch. J Biol Chem 2008; 283: 32650-32659
- 6 Thiel CS, Paulsen K, Bradacs G. et al Rapid alterations of cell cycle control proteins in human T lymphocytes in micro-gravity. Cell Commun Signal 2012; 10: 1
- 7 Tauber S, Hauschild S, Crescio C. et al Signal transduction in primary human T lymphocytes in altered gravity – results of the MASER-12 suborbital space flight mission. Cell Commun Signal 2013; 11: 32
- 8 Tauber S, Hauschild S, Paulsen K. et al Signal transduction in primary human T lymphocytes in altered gravity during parabolic flight and clinostat experiments. Cell Physiol Biochem 2015; 35: 1034-1051
- 9 Paulsen K, Tauber S, Dumrese C. et al Regulation of ICAM-1 in cells of the monocyte/macrophage system in microgravity. Biomed Res Int 2015 2015 538786
- 10 Paulsen K, Tauber S, Goelz N. et al Severe disruption of the cytoskeleton and immunologically relevant surface molecules in a human macrophageal cell line in microgra-vity – Results of an in vitro experiment on board of the Shenzhou-8 space mission. Acta Astronaut 2014; 94: 277-292
- 11 Tauber S, Lauber BA, Paulsen K. et al Cytoskeletal stability and metabolic alterations in primary human macrophages in long-term microgravity. PLoS One 2017; 12: e0175599
- 12 Adrian A, Schoppmann K, Sromicki J. et al The oxidative burst reaction in mammalian cells depends on gravity. Cell Commun Signal 2013; 11: 98
- 13 Thiel CS, de Zélicourt D, Tauber S. et al Rapid adaptation to microgravity in mammalian macrophage cells. Sci Rep 2017; 7: 43
- 14 Thiel CS, Hauschild S, Tauber S. et al Identification of reference genes in human myelomonocytic cells for gene expression studies in altered gravity. Biomed Res Int 2015 2015 363575
- 15 Thiel CS, Hauschild S, Huge A. et al Dynamic gene expression response to altered gravity in human T cells. Sci Rep 2017; 7: 5204
- 16 Thiel CS, Huge A, Hauschild S. et al Stability of gene expression in human T cells in different gravity environments is clustered in chromosomal region 11p15.4. NPJ Microgra-vity 2017; 3: 22
- 17 Tauber S, Christoffel S, Thiel C. et al Transcriptional Homeostasis of Oxidative Stress-Related Pathways in Altered Gravity. Int J Mol Sci 2018: 19 pii: E2814
- 18 Thiel CS, Tauber S, Christoffel S. et al Rapid coupling between gravitational forces and the transcriptome in human myelomonocytic U937 cells. Sci Rep 2018; 8: 13267
- 19 Vogel J, Thiel CS, Tauber S. et al Expression of Hypoxia-Inducible Factor 1α (HIF-1α) and Genes of Related Pathways in Altered Gravity. Int J Mol Sci 2019: 20 pii: E436
- 20 Thiel CS, Tauber S, Lauber B. et al Rapid Morphological and Cytoskeletal Response to Microgravity in Human Primary Macrophages. Int J Mol Sci 2019: 20 pii: E2402
- 21 Masiello MG, Verna R, Cucina A. et al Physical constraints in cell fate specification. A case in point: Microgravity and phenotypes differentiation. Prog Biophys Mol Biol 2018; 134: 55-67
- 22 Coffey DS. Self-organization, complexity and chaos: the new biology for medicine. Nat Med 1998; 4: 882-885
- 23 Strohman RC. The coming Kuhnian revolution in biology. Nat Biotechnol 1997; 15: 194-200
- 24 Ingber DE. How cells (might) sense microgravity. FASEB J 1999; 13 Suppl S3-15
- 25 Ingber DE. Cellular mechanotransduction: putting all the pieces together again. FASEB J 2006; 20: 811-827
- 26 Ingber DE. Tensegrity-based mechanosensing from macro to micro. Prog Biophys Mol Biol 2008; 97: 163-179
- 27 Fedorchak GR, Kaminski A, Lammerding J. Cellular mechanosensing: getting to the nucleus of it all. Prog Biophys Mol Biol 2014; 115: 76-92
- 28 Navarro AP, Collins MA, Folker ES. The nucleus is a conserved mechanosensation and mechanoresponse organelle. Cytoskeleton (Hoboken) 2016; 73: 59-67
- 29 Tajik A, Zhang Y, Wei F. et al Transcription upregulation via force-induced direct stretching of chromatin. Nat Mater 2016; 15: 1287-1296
- 30 Uhler C, Shivashankar GV. Geometric control and modeling of genome reprogramming. Bioarchitecture 2016; 6: 76-84
- 31 Athirasala A, Hirsch N, Buxboim A. Nuclear mechanotransduction: sensing the force from within. Curr Opin Cell Biol 2017; 46: 119-127
- 32 Uhler C, Shivashankar GV. Regulation of genome organization and gene expression by nuclear mechanotransduction. Nat Rev Mol Cell Biol 2017; 18: 717-727
- 33 Thorpe SD, Lee DA. Dynamic regulation of nuclear architecture and mechanics-a rheostatic role for the nucleus in tailoring cellular mechanosensitivity. Nucleus 2017; 8: 287-300