Subscribe to RSS
DOI: 10.1055/a-1001-2412
Update Bildgebung neuroendokrine Neoplasien
Article in several languages: English | deutschPublication History
13 April 2019
30 July 2019
Publication Date:
11 September 2019 (online)
Zusammenfassung
Hintergrund Neuroendokrine Neoplasien (NEN) sind eine sehr heterogene Gruppe von Tumoren mit Expression typischer Proteine. Es wird eine große Bandbreite radiologischer und nuklearmedizinischer Methoden benötigt, um den Krankheitsverlauf adäquat einschätzen und den Patienten optimal behandeln zu können. Das Spektrum der Fragestellungen reicht von der Detektion kleinster Primärtumoren über die Dokumentation des Metastasierungsmusters und -verlaufs bis zur Beurteilung der Eignung für bestimmte invasive bzw. nichtinvasive Therapieverfahren. Hierbei ist eine exakte Befunderfassung und -quantifizierung unerlässlich.
Methode Diese Übersicht basiert auf einer umfassenden Literaturrecherche zu den unterschiedlichen Aspekten der Bildgebung neuroendokriner Neoplasien.
Ergebnisse und Schlussfolgerung Dieser Artikel soll einen Überblick über die zur Verfügung stehenden bildgebenden Verfahren mit ihren jeweiligen Vor- und Nachteilen für die Diagnostik und ihre Wertigkeit für Verlaufskontrollen neuroendokriner Neoplasien geben. Dabei werden Empfehlungen für Untersuchungsprotokolle gegeben, typische Bildbefunde dargestellt und ein Ausblick auf zukünftige Entwicklungen gegeben.
Kernaussagen:
-
Neuroendokrine Neoplasien sind relativ selten und stellen eine komplexe und vielgestaltige Erkrankungsgruppe dar. Langjährige Krankheitsverläufe sind auch im metastasierten Stadium nicht selten.
-
Die Diagnostik neuroendokriner Neoplasien bedient sich eines großen Spektrums komplementärer morphologischer und funktioneller Bildgebungsmethoden.
-
Eine adäquate Methodenwahl, Untersuchungsplanung und Vorbereitung des Patienten sind für ein exaktes Staging und aussagekräftige Verlaufskontrollen unerlässlich.
Zitierweise
-
Figiel JH, Viniol SG, Görlach J et al. Update Regarding Imaging of Neuroendocrine Neoplasms. Fortschr Röntgenstr 2020; 192: 171 – 182
-
Literatur
- 1 Oberndorfer S. Karzinoide Tumoren des Dünndarms. Frankfurter Zeitschrift für Pathologie 1907: 426-429
- 2 Rindi G, Klimstra DS, Abedi-Ardekani B. et al. A common classification framework for neuroendocrine neoplasms: an International Agency for Research on Cancer (IARC) and World Health Organization (WHO) expert consensus proposal. Modern pathology: an official journal of the United States and Canadian Academy of Pathology Inc 2018
- 3 Perren A, Couvelard A, Scoazec JY. et al. ENETS Consensus Guidelines for the Standards of Care in Neuroendocrine Tumors: Pathology: Diagnosis and Prognostic Stratification. Neuroendocrinology 2017; 105: 196-200
- 4 Dasari A, Shen C, Halperin D. et al. Trends in the Incidence, Prevalence, and Survival Outcomes in Patients With Neuroendocrine Tumors in the United States. JAMA oncology 2017; 3: 1335-1342
- 5 Mocellin S, Nitti D. Gastrointestinal carcinoid: epidemiological and survival evidence from a large population-based study (n = 25 531). Annals of oncology: official journal of the European Society for Medical Oncology 2013; 24: 3040-3044
- 6 Yao JC, Hassan M, Phan A. et al. One hundred years after “carcinoid”: epidemiology of and prognostic factors for neuroendocrine tumors in 35825 cases in the United States. Journal of clinical oncology: official journal of the American Society of Clinical Oncology 2008; 26: 3063-3072
- 7 Man D, Wu J, Shen Z. et al. Prognosis of patients with neuroendocrine tumor: a SEER database analysis. Cancer management and research 2018; 10: 5629-5638
- 8 Chiti A, Fanti S, Savelli G. et al. Comparison of somatostatin receptor imaging, computed tomography and ultrasound in the clinical management of neuroendocrine gastro-entero-pancreatic tumours. European journal of nuclear medicine 1998; 25: 1396-1403
- 9 Fan Z, Li Y, Yan K. et al. Application of contrast-enhanced ultrasound in the diagnosis of solid pancreatic lesions--a comparison of conventional ultrasound and contrast-enhanced CT. European journal of radiology 2013; 82: 1385-1390
- 10 Rösch T, Lightdale CJ, Botet JF. et al. Localization of pancreatic endocrine tumors by endoscopic ultrasonography. The New England journal of medicine 1992; 326: 1721-1726
- 11 Ardengh JC, Rosenbaum P, Ganc AJ. et al. Role of EUS in the preoperative localization of insulinomas compared with spiral CT. Gastrointestinal endoscopy 2000; 51: 552-555
- 12 Anderson MA, Carpenter S, Thompson NW. et al. Endoscopic ultrasound is highly accurate and directs management in patients with neuroendocrine tumors of the pancreas. The American journal of gastroenterology 2000; 95: 2271-2277
- 13 Prakashini K, Kakkar C, Sambhaji C. et al. Quantitative and qualitative bowel analysis using mannitol, water and iodine-based endoluminal contrast agent on 64-row detector CT. The Indian journal of radiology & imaging 2013; 23: 373-378
- 14 Ichikawa T, Okada M, Kondo H. et al. Recommended iodine dose for multiphasic contrast-enhanced mutidetector-row computed tomography imaging of liver for assessing hypervascular hepatocellular carcinoma: multicenter prospective study in 77 general hospitals in Japan. Academic radiology 2013; 20: 1130-1136
- 15 Cloyd JM, Kopecky KE, Norton JA. et al. Neuroendocrine tumors of the pancreas: Degree of cystic component predicts prognosis. Surgery 2016; 160: 708-713
- 16 Elias D, Lefevre JH, Duvillard P. et al. Hepatic metastases from neuroendocrine tumors with a “thin slice” pathological examination: they are many more than you think. Annals of surgery 2010; 251: 307-310
- 17 Ruf J, Schiefer J, Furth C. et al. 68Ga-DOTATOC PET/CT of neuroendocrine tumors: spotlight on the CT phases of a triple-phase protocol. Journal of nuclear medicine: official publication, Society of Nuclear Medicine 2011; 52: 697-704
- 18 Veit-Haibach P, Schiesser M, Soyka J. et al. Clinical value of a combined multi-phase contrast enhanced DOPA-PET/CT in neuroendocrine tumours with emphasis on the diagnostic CT component. European radiology 2011; 21: 256-264
- 19 Kumbasar B, Kamel IR, Tekes A. et al. Imaging of neuroendocrine tumors: accuracy of helical CT versus SRS. Abdominal imaging 2004; 29: 696-702
- 20 Ambrosini V, Nanni C, Zompatori M. et al. (68)Ga-DOTA-NOC PET/CT in comparison with CT for the detection of bone metastasis in patients with neuroendocrine tumours. European journal of nuclear medicine and molecular imaging 2010; 37: 722-727
- 21 Zamboni GA, Bernardin L, Pozzi Mucelli R. Dynamic MDCT of the pancreas: is time-density curve morphology useful for the differential diagnosis of solid lesions? A preliminary report. European journal of radiology 2012; 81: e381-e385
- 22 d’Assignies G, Couvelard A, Bahrami S. et al. Pancreatic endocrine tumors: tumor blood flow assessed with perfusion CT reflects angiogenesis and correlates with prognostic factors. Radiology 2009; 250: 407-416
- 23 Johanssen S, Boivin M, Lochs H. et al. The yield of wireless capsule endoscopy in the detection of neuroendocrine tumors in comparison with CT enteroclysis. Gastrointestinal endoscopy 2006; 63: 660-665
- 24 Pilleul F, Penigaud M, Milot L. et al. Possible small-bowel neoplasms: contrast-enhanced and water-enhanced multidetector CT enteroclysis. Radiology 2006; 241: 796-801
- 25 Seemann MD. Detection of metastases from gastrointestinal neuroendocrine tumors: prospective comparison of 18F-TOCA PET, triple-phase CT, and PET/CT. Technology in cancer research & treatment 2007; 6: 213-220
- 26 Lee CH, Kim KA, Lee J. et al. Using low tube voltage (80kVp) quadruple phase liver CT for the detection of hepatocellular carcinoma: two-year experience and comparison with Gd-EOB-DTPA enhanced liver MRI. European journal of radiology 2012; 81: e605-e611
- 27 Ng CS, Wei W, Duran C. et al. CT perfusion in normal liver and liver metastases from neuroendocrine tumors treated with targeted antivascular agents. Abdominal radiology (New York) 2018; 43: 1661-1669
- 28 S2k-Leitlinie Neuroendokrine Tumore. Zeitschrift fur Gastroenterologie 2018; 56: 583-681
- 29 Lin XZ, Wu ZY, Tao R. et al. Dual energy spectral CT imaging of insulinoma-Value in preoperative diagnosis compared with conventional multi-detector CT. European journal of radiology 2012; 81: 2487-2494
- 30 Dromain C, de Baere T, Lumbroso J. et al. Detection of liver metastases from endocrine tumors: a prospective comparison of somatostatin receptor scintigraphy, computed tomography, and magnetic resonance imaging. Journal of clinical oncology: official journal of the American Society of Clinical Oncology 2005; 23: 70-78
- 31 Masselli G, Di Tola M, Casciani E. et al. Diagnosis of Small-Bowel Diseases: Prospective Comparison of Multi-Detector Row CT Enterography with MR Enterography. Radiology 2016; 279: 420-431
- 32 Morse B, Jeong D, Thomas K. et al. Magnetic Resonance Imaging of Neuroendocrine Tumor Hepatic Metastases: Does Hepatobiliary Phase Imaging Improve Lesion Conspicuity and Interobserver Agreement of Lesion Measurements?. Pancreas 2017; 46: 1219-1224
- 33 Moryoussef F, de Mestier L, Belkebir M. et al. Impact of Liver and Whole-Body Diffusion-Weighted MRI for Neuroendocrine Tumors on Patient Management: A Pilot Study. Neuroendocrinology 2017; 104: 264-272
- 34 Löwenthal D, Zeile M, Lim WY. et al. Detection and characterisation of focal liver lesions in colorectal carcinoma patients: comparison of diffusion-weighted and Gd-EOB-DTPA enhanced MR imaging. European radiology 2011; 21: 832-840
- 35 Vandecaveye V, Michielsen K, de Keyzer F. et al. Chemoembolization for hepatocellular carcinoma: 1-month response determined with apparent diffusion coefficient is an independent predictor of outcome. Radiology 2014; 270: 747-757
- 36 de Robertis R, D’Onofrio M, Zamboni G. et al. Pancreatic Neuroendocrine Neoplasms: Clinical Value of Diffusion-Weighted Imaging. Neuroendocrinology 2016; 103: 758-770
- 37 Wang Y, Chen ZE, Yaghmai V. et al. Diffusion-weighted MR imaging in pancreatic endocrine tumors correlated with histopathologic characteristics. Journal of magnetic resonance imaging: JMRI 2011; 33: 1071-1079
- 38 Kang KM, Lee JM, Yoon JH. et al. Intravoxel incoherent motion diffusion-weighted MR imaging for characterization of focal pancreatic lesions. Radiology 2014; 270: 44-453
- 39 Feng L, Huang C, Shanbhogue K. et al. RACER-GRASP: Respiratory-weighted, aortic contrast enhancement-guided and coil-unstreaking golden-angle radial sparse MRI. Magnetic resonance in medicine 2018; 80: 77-89
- 40 Kaltenbach B, Roman A, Polkowski C. et al. Free-breathing dynamic liver examination using a radial 3D T1-weighted gradient echo sequence with moderate undersampling for patients with limited breath-holding capacity. European journal of radiology 2017; 86: 26-32
- 41 Goldenberg JM, Pagel MD. Assessments of tumor metabolism with CEST MRI. NMR Biomed 2018; e3943 10.1002/nbm.3943
- 42 Kim MJ, Mitchell DG, Ito K. et al. Hepatic MR imaging: comparison of 2D and 3D gradient echo techniques. Abdominal imaging 2001; 26: 269-276
- 43 Torkzad MR, Masselli G, Halligan S. et al. Indications and selection of MR enterography vs. MR enteroclysis with emphasis on patients who need small bowel MRI and general anaesthesia: results of a survey. Insights into imaging 2015; 6: 339-346
- 44 Flechsig P, Zechmann CM, Schreiweis J. et al. Qualitative and quantitative image analysis of CT and MR imaging in patients with neuroendocrine liver metastases in comparison to (68)Ga-DOTATOC PET. European journal of radiology 2015; 84: 1593-1600
- 45 Hoffmann R, Thomas C, Rempp H. et al. Performing MR-guided biopsies in clinical routine: factors that influence accuracy and procedure time. European radiology 2012; 22: 663-671
- 46 Wiesli P, Brändle M, Schmid C. et al. Selective arterial calcium stimulation and hepatic venous sampling in the evaluation of hyperinsulinemic hypoglycemia: potential and limitations. Journal of vascular and interventional radiology: JVIR 2004; 15: 1251-1256
- 47 Doppman JL, Jensen RT. Localization of gastroenteropancreatic tumours by angiography. Italian journal of gastroenterology and hepatology 1999; 31 (Suppl. 02) S163-S166
- 48 Krenning EP, Kwekkeboom DJ, Bakker WH. et al. Somatostatin receptor scintigraphy with 111In-DTPA-D-Phe1- and 123I-Tyr3-octreotide: the Rotterdam experience with more than 1000 patients. European journal of nuclear medicine 1993; 20: 716-731
- 49 Sainz-Esteban A, Olmos R, González-Sagrado M. et al. Contribution of ¹¹¹In-pentetreotide SPECT/CT imaging to conventional somatostatin receptor scintigraphy in the detection of neuroendocrine tumours. Nuclear medicine communications 2015; 36: 251-259
- 50 Velikyan I, Sundin A, Sörensen J. et al. Quantitative and qualitative intrapatient comparison of 68Ga-DOTATOC and 68Ga-DOTATATE: net uptake rate for accurate quantification. Journal of nuclear medicine: official publication, Society of Nuclear Medicine 2014; 55: 204-210
- 51 Johnbeck CB, Knigge U, Loft A. et al. Head-to-Head Comparison of 64Cu-DOTATATE and 68Ga-DOTATOC PET/CT: A Prospective Study of 59 Patients with Neuroendocrine Tumors. Journal of nuclear medicine: official publication, Society of Nuclear Medicine 2017; 58: 451-457
- 52 Antwi K, Fani M, Heye T. et al. Comparison of glucagon-like peptide-1 receptor (GLP-1R) PET/CT, SPECT/CT and 3T MRI for the localisation of occult insulinomas: evaluation of diagnostic accuracy in a prospective crossover imaging study. European journal of nuclear medicine and molecular imaging 2018; 45: 2318-2327
- 53 Binderup T, Knigge U, Loft A. et al. 18F-fluorodeoxyglucose positron emission tomography predicts survival of patients with neuroendocrine tumors. Clinical cancer research: an official journal of the American Association for Cancer Research 2010; 16: 978-985
- 54 Gaertner FC, Beer AJ, Souvatzoglou M. et al. Evaluation of feasibility and image quality of 68Ga-DOTATOC positron emission tomography/magnetic resonance in comparison with positron emission tomography/computed tomography in patients with neuroendocrine tumors. Investigative radiology 2013; 48: 263-272
- 55 Lencioni R, Llovet JM. Modified RECIST (mRECIST) assessment for hepatocellular carcinoma. Seminars in liver disease 2010; 30: 52-60
- 56 Choi H, Charnsangavej C, Faria SC. et al. Correlation of computed tomography and positron emission tomography in patients with metastatic gastrointestinal stromal tumor treated at a single institution with imatinib mesylate: proposal of new computed tomography response criteria. Journal of clinical oncology: official journal of the American Society of Clinical Oncology 2007; 25: 1753-1759
- 57 Vliet EI, Krenning EP, Teunissen JJ. et al. Comparison of response evaluation in patients with gastroenteropancreatic and thoracic neuroendocrine tumors after treatment with 177Lu-DOTA0, Tyr3octreotate. Journal of nuclear medicine: official publication, Society of Nuclear Medicine 2013; 54: 1689-1696