Physikalische Medizin, Rehabilitationsmedizin, Kurortmedizin 2020; 30(03): 146-154
DOI: 10.1055/a-1019-7894
Originalarbeit

Muskuläre Belastung unterschiedlicher Ganzkörper-Elektromyostimulations-(WB-EMS) Protokolle – eine Crossover-Untersuchung mit Sportlern ohne WB-EMS Erfahrung

Muscular Strain of Different Whole-Body Electromyostimulation (WB-EMS) Protocols – a Crossover Study with Athletes without Experience in WB-EMS
Wolfgang Kemmler
1   Institute of Medical Physics, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen
› Author Affiliations

ZUSAMMENFASSUNG

Ganzkörper-Elektromyostimulation zeichnet sich durch das Alleinstellungsmerkmal aus, große Muskelgruppen simultan aber regional dezidiert und ggf. supramaximal stimulieren zu können. Diese Konstellation kann zu gesundheitlichen Risiken führen, die unter dem Begriff der „Rhabdomyolyse“ subsumiert werden. Ziel dieses Beitrags war es, unterschiedliche WB-EMS-Protokolle hinsichtlich ihrer muskulären Belastung im Crossover-Verfahren zu überprüfen, um Empfehlungen für deren Applikation abzuleiten. Neunzehn sportliche Männer (28±5 Jahre) ohne jede WB-EMS Erfahrung wurden randomisiert und balanciert den WB-EMS-Protokollen Ausdauertraining (a) ohne (b) mit niedrig-moderat intensivem WB-EMS Dauerstrom-Protokoll mit 7 Hz bzw. (c) 85 Hz sowie Körperübungen (d) ohne bzw. (e) mit hoher, intermittierender (4s – 4s) Impulsintensität (85 Hz) zugeordnet. Es wurde bipolarer Strom mit einer Impulsbreite von 350 µs und direktem Impulsanstieg/-abfall appliziert. Die Dauer des Körperübungsprotokolls lag bei 20 min, das Ausdauerprogramm (75% VO2max, Crosstrainer) dauerte 30 min. Als Marker der muskulären Belastung wurde Kreatinkinase unmittelbar vor/nach, sowie 24, 48 und 72 h nach dem Test bestimmt. Alle Ausdauervarianten zeigten einen relativ moderaten Anstieg der CK-Konzentration um das 2,5–3 fache des Vorbelastungswertes mit Peak nach 48 h. Zwischen den Gruppen ohne und mit bzw. hoher und niedriger Stimulationsfrequenz konnten kein signifikanter Unterschiede erfasst werden. Die „kraftorientierte“ WB-EMS-Variante führte zu einer 48fachen Erhöhung des Vorbelastungswertes mit Peak nach 72 h. Faktisch kein Einfluss auf die CK-Konzentration hatten die Körperübungen ohne WB-EMS. Wie zu erwarten zeigen sich signifikante Unterschiede hinsichtlich der CK-Kinetik zwischen einem ausdauer- und kraftorientierten WB-EMS-Protokoll, die primär der unterschiedlichen Impulsintensität geschuldet sind. Diese Ergebnisse sind bei Empfehlungen zu Regenerationsdauer und Trainingshäufigkeit unterschiedlicher WB-EMS-Protokolle zu berücksichtigen.

ABSTRACT

The unique aspect of whole-body electromyostimulation its simultaneous but regionally dedicated stimulation of all main muscle groups with, when desired, supra-maximal intensity. This however can entail severe risks for health subsumable under the term “rhabdomyolysis”. The aim was to examine the effect of different WB-EMS protocols on muscular strain as determined by creatine kinase (CK) kinetics to derive recommendations for WB-EMS application. Nineteen exercising men (28±5 years) without WB-EMS experience were randomly assigned to the WB-EMS protocols (bipolar, pulse width 350µs, rectangular) endurance training (a) without (b) with low-moderately intensive continuous WB-EMS with 7 Hz or (c) 85 Hz or slight (resistance) exercises (d) without/ (e) with high intensity, intermittent (4s–4s) pulse intensity (85 Hz). CK was determined before/after testing and 24, 48 and 72 h post exercise. All endurance protocols resulted in a low increase of the CK concentration (2.5–3 fold of the pre-test level). No significant differences were observed between the groups without and with WB-EMS application or with high and low frequency (i. e. 7 vs. 85 Hz) WB-EMS. In contrast, the resistance type WB-EMS method generated up to a 48-fold increase of the pre-test level. Exercises without WB-EMS did not influence the CK concentration. As expected, there were significant differences in CK kinetics between endurance- and resistance-oriented WB-EMS protocols, primarily due to the different impulse intensity. These results should be taken into account in recommendations on regeneration and training frequency of different WB-EMS protocols



Publication History

Received: 30 July 2019

Accepted: 25 September 2019

Article published online:
24 October 2019

© Georg Thieme Verlag KG
Stuttgart · New York

 
  • Literatur

  • 1 Wahl P, Hein M, Achtzehn S. et al. Acute metabolic, hormonal and psychological responses to cycling with superimposed electromyostimulation. Eur J Appl Physiol 2014; 114: 2331-2339
  • 2 Wirtz N, Zinner C, Doermann U. et al. Effects of Loaded Squat Exercise with and without Application of Superimposed EMS on Physical Performance. Journal of sports science & medicine 2016; 15: 26-33
  • 3 Kemmler W, Weissenfels A, Willert S. et al. Efficacy and safety of low frequency Whole-Body Electromyostimulation (WB-EMS) to improve health-related outcomes in non-athletic adults. A systematic review. Frontiers of Physiology 2018; 9: 573. DOI: 10.3389/fphys.2018.0057.
  • 4 Willert S, Weissenfels A, Kohl M et al. Effects of Whole-Body Electromyostimulation (WB-EMS) on the energy-restriction-induced reduction of muscle mass during intended weight loss. Frontiers of Physiology 2019; accepted for publication
  • 5 Teschler M, Weissenfels A, Bebenek M. et al. Very high creatine kinase CK levels after WB_EMS. Are there implications for health. Int J Clin Exp Med 2016; 9: 22841-22850
  • 6 Kemmler W, Froehlich M, von Stengel S. et al. Whole-Body Electromyostimulation – The Need for Common Sense! Rationale and Guideline for a Safe and Effective Training. Dtsch Z Sportmed 2016; 67: 218-221
  • 7 Stollberger C, Finsterer J. Side effects of whole-body electro-myo-stimulation. Wien Med Wochenschr 2019; 169: 173-180
  • 8 Stöllberger C, Finsterer J. Acute myopathy as a side effect of electromyostimulation. Letter to the editor. WMW 2019; 169: 173-180
  • 9 Kemmler W, Von Stengel S, Schwarz J. et al. Effect of whole-body electromyostimulation on energy expenditure during exercise. J Strength Cond Res 2012; 26: 240-245
  • 10 Schwarz J. Einfluss adjuvanter EMS-Stimulation bei Ausdauer- und Kraftbelastungen auf den Energieverbrauch junger Männer. [Master Thesis] Institute of Medical Physics, University of Erlangen Nürnberg, Erlangen; Germany: 2006
  • 11 Hettchen M, Glockler K, von Stengel S. et al. Effects of Compression Tights on Recovery Parameters after Exercise Induced Muscle Damage: A Randomized Controlled Crossover Study. Evidence-Based Complementary and Alternative Medicine: eCAM 2019; DOI: 10.1155/2019/5698460.
  • 12 Kemmler W, Teschler M, Bebenek M. et al. (Very) high Creatinkinase concentration after exertional whole-body electromyostimulation application: health risks and longitudinal adaptations. Wien Med Wochenschr 2015; 165: 427-435
  • 13 Borg E, Kaijser L. A comparison between three rating scales for perceived exertion and two different work tests. Scand J Med Sci Sports 2006; 16: 57-69
  • 14 Cohen J. Statistical power analysis for the behavioral sciences. Lawrence Earlbaum Associate, Hillsdale, NJ: 1988
  • 15 Kemmler W, von Stengel S. Response to the letter of Stoellberger et al. “Acute myopathy as a side effect of electromyostimulation”. Wien Med Wochenschr 2018; 169: 183-184
  • 16 Kratz A, Lewandrowski KB, Siegel AJ. et al. Effect of marathon running on hematologic and biochemical laboratory parameters, including cardiac markers. American journal of clinical pathology 2002; 118: 856-863
  • 17 Nosaka K, Clarkson PM. Muscle damage following repeated bouts of high force eccentric exercise. Med Sci Sports Exerc 1995; 27: 1263-1269
  • 18 Nosaka K, Newton M. Concentric or eccentric training effect on eccentric exercise-induced muscle damage. Med Sci Sports Exerc 2002; 34: 63-69
  • 19 Visweswaran P, Guntupalli J. Rhabdomyolysis. Critical care clinics 1999; 15: 415-428
  • 20 Heled Y, Bloom MS, Wu TJ. et al. CK-MM and ACE genotypes and physiological prediction of the creatine kinase response to exercise. J Appl Physiol (1985) 2007; 103: 504-510
  • 21 Chen TC. Variability in muscle damage after eccentric exercise and the repeated bout effect. Res Q Exerc Sport 2006; 77: 362-371
  • 22 Wahl P, Hein M, Achtzehn S. et al. Acute effects of superimposed electromyostimulation during cycling on myokines and markers of muscle damage. J Musculoskelet Neuronal Interact 2015; 15: 53-59
  • 23 Binder-Macleod SA, McDermond LR. Changes in the force-frequency relationship of the human quadriceps femoris muscle following electrically and voluntarily induced fatigue. Phys Ther 1992; 72: 95-104
  • 24 Kesar T, Binder-Macleod S. Effect of frequency and pulse duration on human muscle fatigue during repetitive electrical stimulation. Experimental physiology 2006; 91: 967-976
  • 25 Gondin J, Giannesini B, Vilmen C. et al. Effects of stimulation frequency and pulse duration on fatigue and metabolic cost during a single bout of neuromuscular electrical stimulation. Muscle Nerve 2010; 41: 667-678
  • 26 Black CD, McCully KK. Force per active area and muscle injury during electrically stimulated contractions. Med Sci Sports Exerc 2008; 40: 1596-1604
  • 27 Nosaka K, Sakamoto K, Newton M. et al. How long does the protective effect on eccentric exercise-induced muscle damage last?. Med Sci Sports Exerc 2001; 33: 1490-1495