Subscribe to RSS
DOI: 10.1055/a-1023-4369
Effekt von Chromovitrektomiefarbstoffen mit Lutein auf die verbesserte Darstellung von epiretinalen Pathologien im intraoperativen OCT
Effect of Dyes Containing Lutein on Enhanced Visibility of Epiretinal Pathologies in Intraoperative OCTZusammenfassung
Hintergrund Epiretinale Membranen können zu Metamorphopsien und Sehverschlechterung führen. Der therapeutische „Goldstandard“ ist die Vitrektomie mit Membrane Peeling, die normalerweise mit Chromovitrektomiefarbstoffen durchgeführt wird. Ziel unserer Studie war es, zu untersuchen, ob Chromovitrektomiefarbstoffe mit Lutein die Darstellung von epiretinalem Gewebe in der intraoperativen optischen Kohärenztomografie (iOCT) verbessern können.
Patienten und Methoden Eine prospektive Studie mit 20 Augen von 20 Patienten, die aufgrund einer idiopathischen epiretinalen Gliose zur Operation geplant waren. Bei allen Patienten wurde eine 23-G-Pars-plana-Vitrektomie mit Membrane Peeling unter iOCT-Assistenz durchgeführt. Die Membranen wurden mit einem Chromovitrektomiefarbstoff, der Trypanblau, „brilliant blue G“ und Lutein enthielt (Tripledyne und Dualdyne, beide: Kemin Industries Inc., USA) vor dem Peeling gefärbt.
Ergebnisse Bei allen Patienten (n = 20) war die Färbung der Membranen gut; kristalline Luteinpartikel konnten im iOCT gut dargestellt werden, verglichen zu gelöstem Lutein, das epiretinales Gewebe im iOCT nicht verbessert darstellen konnte.
Schlussfolgerung Die Zugabe von Lutein zu Chromovitrektomiefarbstoffen ermöglicht bei Verwendung von kristallinem Lutein eine verbesserte Darstellung von epiretinalen Membranen im iOCT.
Abstract
Background Epiretinal membranes are a disorder leading to metamorphopsia and loss in visual function. The gold standard in therapy is vitrectomy with membrane peeling, usually performed with chromovitrectomy. The aim of this study was to examine whether dyes containing lutein are capable of enhancing visualization of epiretinal tissue in intraoperative optical coherence tomography (iOCT).
Patients and Methods This was a prospective study that included 20 eyes of 20 patients with idiopathic epiretinal membranes scheduled for surgery. 23 G pars plana vitrectomy with intraoperative assistance of iOCT was performed in all cases. Staining of epiretinal membranes was performed with dyes containing trypan blue, brilliant blue G and lutein (tripledyne and dualdyne, both Kemin Industries Inc., USA).
Results In all patients (n = 20), staining of epiretinal tissue was good, and crystalline lutein particles could be well depicted in iOCT compared to soluble lutein that does not enhance visualisation of epiretinal tissue in iOCT.
Conclusions The addition of lutein to commonly used dye formulations offers good staining properties and, in case of crystalline lutein, also enhances epiretinal tissue in iOCT.
Publication History
Received: 25 July 2019
Accepted: 16 September 2019
Article published online:
26 November 2019
© 2020. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Zhao F, Gandorfer A, Haritoglou C. et al. Epiretinal cell proliferation in macular pucker and vitreomacular traction syndrome: analysis of flat-mounted internal limiting membrane specimens. Retina 2013; 33: 77-88 doi:10.1097/IAE.0b013e3182602087
- 2 Kohno RI, Hata Y, Kawahara S. et al. Possible contribution of hyalocytes to idiopathic epiretinal membrane formation and its contraction. Br J Ophthalmol 2009; 93: 1020-1026 doi:10.1136/bjo.2008.155069
- 3 Sommer F, Kobuch K, Brandl F. et al. Ascorbic acid modulates proliferation and extracellular matrix accumulation of hyalocytes. Tissue Eng 2007; 13: 1281-1289
- 4 Sommer F, Pollinger K, Brandl F. et al. Hyalocyte proliferation and ECM accumulation modulated by bFGF and TGF-beta1. Graefes Arch Clin Exp Ophthalmol 2008; 246: 1275-1284 doi:10.1007/s00417-008-0846-z
- 5 Mitamura Y, Hirano K, Baba T. et al. Correlation of visual recovery with presence of photoreceptor inner/outer segment junction in optical coherence images after epiretinal membrane surgery. Br J Ophthalmol 2009; 93: 171-175 doi:10.1136/bjo.2008.146381
- 6 Oster SF, Mojana F, Brar M. et al. Disruption of photoreceptor inner segment/outer segment layer on spectral domain-optical coherence tomography is a predictor of poor visual acuity in patients with epiretinal membranes. Retina 2010; 30: 713-718 doi:10.1097/IAE.0b013e3181c596e3
- 7 Shimozono M, Oishi A, Hata M. et al. The significance of cone outer segment tips as prognostic factor in epiretinal membrane surgery. Am J Ophthalmol 2012; 153: 698-704 doi:10.1016/j.ajo.2011.09.011
- 8 Kadonosono K, Itoh N, Uchio E. et al. Staining of internal membrane in macular hole surgery. Arch Ophthalmol 2000; 118: 1116-1118 doi:10.1001/archopht.118.8.1116
- 9 Burk SE, Da Mata AP, Snyder ME. et al. Indocyanine green-assisted peeling of the retinal internal limiting membrane. Ophthalmology 2000; 107: 2010-2014 doi:10.1016/s0161-6420(00)00375-4
- 10 Tao YK, Ehlers JP, Toth CA. et al. Intraoperative spectral domain optical coherence tomography for vitreoretinal surgery. Opt Lett 2010; 35: 3315-3317 doi:10.1364/OL.35.003315
- 11 Binder S, Falkner-Radler CI, Hauger C. et al. Feasibility of intrasurgical spectral-domain optical coherence tomography. Retina 2011; 31: 1332-1336 doi:10.1097/IAE.0b013e3182019c18
- 12 Ehlers JP, Tao YK, Farsiu S. et al. Integration of a spectral domain optical coherence tomography system into a surgical microscope for intraoperative imaging. Invest Ophthalmol Vis Sci 2011; 528: 3153-3159 doi:10.1167/iovs.10-6720
- 13 Hahn P, Migacz J, OʼConnell R. et al. Unprocessed real-time imaging of vitreoretinal surgical maneuvers using a microscope-integrated spectral-domain optical coherence tomography system. Graefes Arch Clin Exp Ophthalmol 2013; 251: 213-220 doi:10.1007/s00417-012-2052-2
- 14 Hahn P, Migacz J, OʼDonnell R. et al. Preclinical evaluation and intraoperative human retinal imaging with a high-resolution microscope-integrated spectral domain optical coherence tomography device. Retina 2013; 33: 1328-1337 doi:10.1097/IAE.0b013e3182831293
- 15 Ehlers JP, Kaiser PK, Srivastava SK. Intraoperative optical coherence tomography using the Rescan 700: preliminary results from the DISCOVER study. Br J Ophthalmol 2014; 98: 1329-1332 doi:10.1136/bjophthalmol-2014-305294
- 16 Ehlers JP, Srivastava SK, Feiler D. et al. Integrative advances for OCT-guided ophthalmic surgery and intraoperative OCT: microscope integration, surgical instrumentation, and heads-up display surgeon feedback. PLoS One 2014; 9: e105224 doi:10.1371/journal.pone.0105224
- 17 Falkner-Radler CI, Glittenberg C, Gabriel M. et al. Intrasurgical microscope-integrated spectral domain optical coherence tomography-assisted membrane peeling. Retina 2015; 35: 2100-2106 doi:10.1097/IAE.0000000000000596
- 18 Hattenbach LO, Framme C, Juncker B. et al. Intraoperative Echtzeit-OCT in der Makulachirurgie. Ophthalmologe 2016; 113: 656-662 doi:10.1007/s00347-016-0297-6
- 19 Maier MM, Nasseri A, Framme C. et al. Die intraoperative optische Kohärenztomografie in der Netzhaut-Glaskörper-Chirurgie. Aktuelle Erfahrungen und Ausblick auf künftige Entwicklungsschritte. Klin Monatsbl Augenheilkd 2018; 235: 1028-1034 doi:10.1055/s-0043-106304
- 20 Leisser C, Hirnschall N, Palkovits S. et al. Intraoperative optical coherence tomography-guided membrane peeling for surgery of macular pucker: advantages and limitations. Ophthalmologica 2019; 241: 234-240 doi:10.1159/000493279
- 21 Maier M, Bohnacker S, Klein J. et al. Vitrektomie mit iOCT-assistierter invertierter ILM-Flap-Technik bei großen Makulaforamina. Ophthalmologe 2019; 116: 617-624 doi:10.1007/s00347-018-0769-y
- 22 Ehlers JP, McNutt SA, Kaiser PK. et al. Contrast-enhanced intraoperative optical coherence tomography. Br J Ophthalmol 2013; 97: 1384-1386 doi:10.1136/bjophthalmol-2012-303048
- 23 Ehlers JP, McNutt SA, Dar S. et al. Visualisation of contrast-enhanced intraoperative optical coherence tomography with indocyanine green. Br J Ophthalmol 2014; 98: 1588-1591 doi:10.1136/bjophthalmol-2014-305295
- 24 Leisser C, Hackl C, Hirnschall N. et al. Visualizing macular structures during membrane peeling surgery with an intraoperative spectral-domain optical coherence tomography device. Ophthalmic Surg Lasers Imaging Retina 2016; 47: 328-332 doi:10.3928/23258160-20160324-04
- 25 Teba FA, Mohr A, Eckardt C. et al. Trypan blue staining in vitreoretinal surgery. Ophthalmology 2003; 110: 2409-2412
- 26 Henrich PB, Priglinger SG, Haritoglou C. et al. Quantification of contrast recognizability in sequential epiretinal membrane removal and internal limiting membrane peeling in trypan blue-assisted macular surgery. Retina 2013; 33: 818-824 doi:10.1097/IAE.0b013e318271f250
- 27 Enaida H, Hisatomi T, Hata Y. et al. Brilliant blue G selectively stains the internal limiting membrane/brilliant blue G-assisted membrane peeling. Retina 2006; 26: 631-636 doi:10.1097/01.iae.0000236469.71443.aa
- 28 Peyman GA, Cheema R, Conway MD. et al. Triamcinolone acetonide as an aid to visualization of the vitreous and the posterior hyaloid during pars plana vitrectomy. Retina 2000; 20: 554-555
- 29 Maia M, Furlani BA, Souza-Lima AA. et al. Lutein: a new dye for chromovitrectomy. Retina 2014; 34: 262-272 doi:10.1097/IAE.0b013e3182a0b7f4
- 30 Gandorfer A, Haritoglou C, Gass CA. et al. Indocyanine green-assisted peeling of the internal limiting membrane may cause retinal damage. Am J Ophthalmol 2001; 132: 431-433 doi:10.1016/s0002-9394(01)01087-x
- 31 Haritoglou C, Gandorfer A, Gass CA. et al. Indocyanine green-assisted peeling of the internal limiting membrane in macular hole surgery affects visual outcome: a clinicopathologic correlation. Am J Ophthalmol 2002; 134: 836-841 doi:10.1016/s0002-9394(02)01816-0
- 32 Engelbrecht NE, Freeman J, Sternberg jr. P. et al. Retinal pigment epithelial changes after macular hole surgery with indocyanine green-assisted internal limiting membrane peeling. Am J Ophthalmol 2002; 133: 89-94 doi:10.1016/s0002-9394(01)01293-4
- 33 Gandorfer A, Haritoglou C, Gandorfer A. et al. Retinal damage from indocyanine green in experimental macular surgery. Invest Ophthalmol Vis Sci 2003; 44: 316-323 doi:10.1167/iovs.02-0545
- 34 Haritoglou C, Gandorfer A, Gass CA. et al. The effect of indocyanine-green on functional outcome of macular pucker surgery. Am J Ophthalmol 2003; 135: 328-337 doi:10.1016/s0002-9394(02)01969-4
- 35 Uemura A, Kanda S, Sakamoto Y. et al. Visual field defects after uneventful vitrectomy for epiretinal membrane with indocyanine green-assisted internal limiting membrane peeling. Am J Ophthalmol 2003; 136: 252-257 doi:10.1016/s0002-9394(03)00157-0
- 36 Ho JD, Chen HC, Chen SN. et al. Reduction of indocyanine green-associated photosensitizing toxicity in retinal pigment epithelium by sodium elimination. Arch Ophthalmol 2004; 122: 871-878 doi:10.1001/archopht.122.6.871
- 37 Maia M, Haller JA, Pieramici DJ. et al. Retinal pigment epithelial abnormalities after internal limiting membrane peeling guided by indocyanine green staining. Retina 2004; 24: 157-180
- 38 Maia M, Margalit E, Lakhanpal R. et al. Effects of intravitreal indocyanine green injection in rabbits. Retina 2004; 24: 69-79
- 39 Maia M, Kellner L, de Juan jr. E. et al. Effects of indocyanine green injection on the retinal surface and into the subretinal space in rabbits. Retina 2004; 24: 80-91
- 40 Cheng SN, Yang TC, Ho JD. et al. Ocular toxicity of intravitreal indocyanine green. J Ocul Pharmacol Ther 2005; 21: 85-93 doi:10.1089/jop.2005.21.85
- 41 Yamashita T, Uemura A, Kita H. et al. Long-term outcomes of visual field defects after indocyanine green-assisted macular hole surgery. Retina 2008; 28: 1228-1233 doi:10.1097/IAE.0b013e31817b6b2e
- 42 von Jagow B, Höing A, Gandorfer A. et al. Functional outcome of indocyanine green-assisted macular surgery: 7-year follow-up. Retina 2009; 29: 1249-1256 doi:10.1097/IAE.0b013e3181a91dd3
- 43 Kernt M, Hirneiss C, Wolf A. et al. Indocyanine green increases light-induced oxidative stress, senescene, and matrix metalloproteinases 1 and 3 in human RPE cells. Acta Ophthalmol 2012; 90: 571-579 doi:10.1111/j.1755-3768.2010.01961.x
- 44 Ando F, Yasui O, Hirose H. et al. Optic nerve atrophy after vitrectomy with indocyanine green-assisted internal limiting membrane peeling in diffuse diabetic macular edema. Adverse effect of ICG-assisted ILM peeling. Graefes Arch Clin Exp Ophthalmol 2004; 242: 995-999 doi:10.1007/s00417-004-0864-4
- 45 Hida T, Chandler D, Arena JE. et al. Experimental and clinical observations of the intraocular toxicity of commercial corticosteroid preparations. Am J Ophthalmol 1986; 101: 190-195 doi:10.1016/0002-9394(86)90593-3
- 46 Yeung CK, Chan KP, Chiang SW. et al. The toxic and stress responses of cultured human retinal pigment epithelium (ARPE19) and human glial cells (SVG) in the presence of triamcinolone. Invest Ophthalmol Vis Sci 2003; 44: 5293-5300 doi:10.1167/iovs.03-0490
- 47 Narayanan R, Mungcal JK, Kenney MC. et al. Toxicity of triamcinolone acetonide on retinal neurosensory and pigment epithelial cells. Invest Ophthalmol Vis Sci 2006; 47: 722-728 doi:10.1167/iovs.05-0772
- 48 Szurman P, Kaczmarek R, Spitzer MS. et al. Differential toxic effect of dissolved triamcinolone and its crystalline deposits on cultured human retinal pigment epithelium (ARPE19) cells. Exp Eye Res 2006; 83: 584-592 doi:10.1016/j.exer.2006.02.012
- 49 Szurman P, Sierra A, Kaczmarek R. et al. Different biocompatibility of crystalline triamcinolone deposits on retinal cells in vitro and in vivo. Exp Eye Res 2007; 85: 44-53 doi:10.1016/j.exer.2007.03.003
- 50 Veckeneer M, van Overdam K, Monzer J. et al. Ocular toxicity study of trypan blue injected into the vitreous cavity of rabbit eyes. Graefes Arch Clin Exp Ophthalmol 2001; 239: 698-704
- 51 Perrier M, Sebag M. Epiretinal membrane surgery assisted by trypan blue. Am J Ophthalmol 2003; 135: 909-911 doi:10.1016/s0002-9394(02)02256-0
- 52 Stalmans P, Van Aken EH, Melles G. et al. Trypan blue not toxic for retinal pigment epithelium in vitro. Am J Ophthalmol 2003; 135: 234-236 doi:10.1016/s0002-9394(02)01891-3
- 53 Haritoglou C, Eibl K, Schaumberger M. et al. Functional outcome after trypan blue-assisted vitrectomy for macular pucker: a prospective, randomized, comparative trial. Am J Ophthalmol 2004; 138: 1-5 doi:10.1016/j.ajo.2004.03.005
- 54 Narayanan R, Kenney MC, Kamjoo S. et al. Trypan blue: effect on retinal pigment and neurosensory retinal cells. Invest Ophthalmol Vis Sci 2005; 46: 304-309 doi:10.1167/iovs.04-0703
- 55 Lüke M, Januschowski K, Beutel J. et al. Electrophysiological effects of Brilliant Blue G in the model of the isolated perfused vertebrate retina. Graefes Arch Clin Exp Ophthalmol 2008; 246: 817-822 doi:10.1007/s00417-007-0761-8
- 56 Azuma K, Noda Y, Hirasawa K. et al. Brilliant Blue G-assisted internal limiting membrane peeling for macular hole: a systematic review of literature and meta-analysis. Retina 2016; 36: 851-858 doi:10.1097/IAE.0000000000000968
- 57 Tognetto D, De Giacinto C, DʼAloisio R. et al. The combination of trypan blue and brilliant blue g-assisted vitrectomy for macular pucker: histopathological findings. Ophthalmologica 2018; 239: 167-175 doi:10.1159/000485986
- 58 Malerbi FK, Maia M, Farah ME. et al. Subretinal brilliant blue G migration during internal limiting membrane peeling. Br J Ophthalmol 2009; 93: 1687 doi:10.1136/bjo.2008.151597
- 59 Ejstrup R, la Cour M, Heegaard S. et al. Toxicity profiles of subretinal indocyanine green, Brilliant Blue G and triamcinolone acetonide: a comparative study. Graefes Arch Clin Exp Ophthalmol 2012; 250: 669-677 doi:10.1007/s00417-011-1886-3
- 60 Almeida FP, De Lucca AC, Scott IU. et al. Accidential subretinal brilliant blue G migration during internal limiting membrane peeling surgery. JAMA Ophthalmol 2015; 133: 85-88 doi:10.1001/jamaophthalmol.2014.3869
- 61 Ahmed SS, Lott MN, Marcus DM. The macular xanthophylls. Surv Ophthalmol 2005; 50: 183-193 doi:10.1016/j.survophthal.2004.12.009
- 62 Junghans A, Sies H, Stahl W. Macular pigments lutein and zeaxanthin as blue light filters studied in liposomes. Arch Biochem Biophys 2001; 391: 160-164 doi:10.1006/abbi.2001.2411
- 63 Trevithick-Sutton CC, Foote CS, Collins M. et al. The retinal carotenoids zeaxanthin and lutein scavenge superoxide and hydroxyl radicals: a chemiluminescence and ESR study. Mol Vis 2006; 12: 1127-1135
- 64 Kijlstra A, Tian Y, Kelly ER. et al. Lutein: more than just a filter for blue light. Prog Retin Eye Res 2012; 31: 303-315 doi:10.1016/j.preteyeres.2012.03.002
- 65 Leisser C, Hirnschall N, Hackl C. et al. Risk factors for postoperative intraretinal cystoid changes after peeling of idiopathic epiretinal membranes among patients randomized for balanced salt solution and air-tamponade. Acta Ophthalmol 2018; 96: e439-e444 doi:10.1111/aos.13635