Klin Monbl Augenheilkd 2019; 236(12): 1423-1427
DOI: 10.1055/a-1032-8559
Übersicht
Georg Thieme Verlag KG Stuttgart · New York

Künstliche Intelligenz zur Entwicklung von Screening-Parametern im Bereich der kornealen Biomechanik

Artificial Intelligence for the Development of Screening Parameters in the Field of Corneal Biomechanics
Sven Reisdorf
Product Management, OCULUS Optikgeräte GmbH, Wetzlar
› Institutsangaben
Weitere Informationen

Publikationsverlauf

eingereicht 23. September 2019

akzeptiert 15. Oktober 2019

Publikationsdatum:
05. Dezember 2019 (online)

Zusammenfassung

Machine Learning stellt insbesondere dann eine sinnvolle Alternative dar, wenn eine Datenanalyse mit wissensbasierten analytischen Methoden sehr aufwendig und schwierig ist. In solchen Fällen bietet sich auch eine Kombination aus analytischen Methoden und empirischen Methoden mittels künstlicher Intelligenz (KI) an. Die Entwicklung verschiedener Auswertefunktionen des Corvis ST ist hierfür ein konkretes Beispiel. In diesem Beitrag wird die Entwicklung dreier Screening-Parameter mittels KI beschrieben. Der Artikel zeigt, wie diese Entwicklungen im Bereich der Erkennung von klinischem und subklinischem Keratokonus sowie Glaukom-Screening klinisch hilfreich sind.

Abstract

Machine learning and artificial intelligence are mostly important if data analysis by knowledge-based analytical methods is difficult and complex. In such cases, combined analytical and empirical approaches based on AI are also meaningful. The development and validation of several clinical parameters for the Corvis ST are a concrete example of this approach. In this article, the development of three screening parameters is described. It is shown how these developments lead to clinical solutions that can be beneficial for detecting clinical and subclinical keratoconus as well as for glaucoma screening.

 
  • Literatur

  • 1 Vinciguerra R, Elsheikh A, Roberts CJ. et al. Influence of pachymetry and intraocular pressure on dynamic corneal response parameters in healthy patients. J Refract Surg 2016; 32: 550-561
  • 2 Luce DA. Determining in vivo biomechanical properties of the cornea with an ocular response analyzer. J Cataract Refract Surg 2005; 31: 156-162
  • 3 Susanna CN, Diniz-Filho A, Daga FB. et al. A prospective longitudinal study to investigate corneal hysteresis as a risk factor for predicting development of glaucoma. Am J Ophthalmol 2018; 187: 148-152
  • 4 Kotecha A, Russell RA, Sinapis A. et al. Biomechanical parameters of the cornea measured with the Ocular Response Analyzer in normal eyes. BMC Ophthalmol 2014; 14: 11
  • 5 Eliasy A, Chen KJ, Vinciguerra R. et al. Ex-vivo experimental validation of biomechanically-corrected intraocular pressure measurements on human eyes using the CorVis ST. Exp Eye Res 2018; 175: 98-102
  • 6 Joda AA, Shervin MM, Kook D. et al. Development and validation of a correction equation for Corvis tonometry. Comput Methods Biomech Biomed Engin 2016; 19: 943-953
  • 7 Roberts CJ, Mahmoud AM, Bons JP. et al. Introduction of two novel stiffness parameters and interpretation of air puff induced biomechanical deformation response parameters with a dynamic Scheimpflug analyzer. J Refract Surg 2017; 33: 266-273
  • 8 Eliasy A, Chen KJ, Vinciguerra R. et al. Determination of corneal biomechanical behavior in-vivo for healthy eyes using CorVis ST tonometry: Stress-Strain Index. Front Bioeng Biotechnol 2019; 7: 105 doi:10.3389/fbioe.2019.00105
  • 9 Elham R, Jafarzadehpur E, Hashemi H. et al. Keratoconus diagnosis using Corvis ST measured biomechanical parameters. J Curr Ophthalmol 2017; 29: 175-181
  • 10 Vinciguerra R, Ambrósio jr. R, Elsheikh A. et al. Detection of keratoconus with a new biomechanical index. J Refract Surg 2016; 32: 803-810
  • 11 Wang YM, Chan TCY, Yu M. et al. Comparison of corneal dynamic and tomographic analysis in normal, forme fruste keratoconic, and keratoconic eyes. J Refract Surg 2017; 33: 632-638
  • 12 Steinberg J, Amirabadi NE, Frings A. et al. Keratoconus screening with dynamic biomechanical in vivo Scheimpflug analyses: a proof-of-concept study. J Refract Surg 2017; 33: 773-778
  • 13 Ambrósio jr. R, Lopes BT, Faria-Correia F. et al. Integration of Scheimpflug-based corneal tomography and biomechanical assessments for enhancing ectasia detection. J Refract Surg 2017; 33: 434-443
  • 14 Gomes JA, Tan D, Rapuano CJ. et al. Group of Panelists for the Global Delphi Panel of Keratoconus and Ectatic Diseases. Global consensus on keratoconus and ectatic diseases. Cornea 2015; 34: 359-369
  • 15 Ferreira-Mendes J, Lopes BT, Faria-Correia F. et al. Enhanced ectasia detection using corneal tomography and biomechanics. Am J Ophthalmol 2019; 197: 7-16
  • 16 Chan TCY, Wang YM, Yu M. et al. Comparison of corneal tomography and a new combined tomographic biomechanical index in subclinical keratoconus. J Refract Surg 2018; 34: 616-621
  • 17 Steinberg J, Siebert M, Katz T. et al. Tomographic and biomechanical Scheimpflug imaging for keratoconus characterization: a validation of current indices. J Refract Surg 2018; 34: 840-847
  • 18 Sigal IA, Grimm JL, Jan NJ. et al. Eye-specific IOP-induced displacements and deformations of human lamina cribrosa. Invest Ophthalmol Vis Sci 2014; 55: 1-15
  • 19 Vinciguerra R, Rehman S, Vallabh NA. et al. Corneal biomechanics and biomechanically corrected intraocular pressure in primary open-angle glaucoma, ocular hypertension and controls. Br J Ophthalmol 2019;
  • 20 Pillunat KR, Herber R, Spoerl E. et al. A new biomechanical glaucoma factor to discriminate normal eyes from normal pressure glaucoma eyes. Acta Ophthalmol 2019; 97: e962-e967 doi:10.1111/aos.14115