Nervenheilkunde 2020; 39(01/02): 31-39
DOI: 10.1055/a-1037-2271
Schwerpunkt
© Georg Thieme Verlag KG Stuttgart · New York

Darmmikrobiom bei primären Hirntumoren

Datenlage und Hypothesen
Tareq M. Anssar
1   Wilhelm Sander-Therapieeinheit NeuroOnkologie und Klinik und Poliklinik für Neurologie, Universität Regensburg
,
Peter Hau
1   Wilhelm Sander-Therapieeinheit NeuroOnkologie und Klinik und Poliklinik für Neurologie, Universität Regensburg
› Author Affiliations
Further Information

Publication History

Publication Date:
12 February 2020 (online)

ZUSAMMENFASSUNG

Primäre Hirntumoren kommen weniger häufig vor als andere Tumorentitäten. Das Glioblastom ist der häufigste primäre Hirntumor bei Erwachsenen und hat eine sehr schlechte Prognose. Die Pathophysiologie vieler Hirntumoren ist nur unzureichend verstanden. Eine kurative Therapie existiert bis auf wenige Ausnahmen nicht. Bei einigen soliden und hämatologischen Tumoren konnte in den letzten Jahren ein Zusammenhang zwischen Tumorentstehung und -progression mit Veränderungen im intestinalen Mikrobiom festgestellt werden. Zusammenhänge zwischen Mikrobiota und primären Hirntumoren wurden hingegen nicht publiziert.

In der vorliegenden Arbeit werden Mechanismen dargestellt, die bei einer möglichen Interaktion zwischen Mikrobiom und Hirntumoren eine Rolle spielen können. Dabei steht die Schranke vom Darmepithel zum peripheren Blut und vom peripheren Blut zum Gehirn im Mittelpunkt des Interesses. Im Hinblick auf die Darm-Blutschranke sind Interaktionen zwischen Mikrobiom und Immunphänotyp sowie Metaboliten im peripheren Blut bekannt. Im Hinblick auf die Blut-Hirnschranke bestehen mögliche Assoziationen des Immunphänotyps und der Metaboliten im peripheren Blut mit der Immuninfiltration im Gehirn und der Induktion pathogeneserelevanter Signalkaskaden.

ABSTRACT

Primary brain tumours have a low incidence in comparison to other tumours. Glioblastoma is the most common primary brain tumour and has a poor prognosis. The underlying pathophysiology of many brain tumours is only poorly understood. With some exceptions, there is no curative therapy. In the past years, several associations between tumour development and progression of various solid and haematological tumour entities and alterations of the intestinal microbiome have been identified. However, so far there are no publications describing a relation between microbiota and primary brain tumours.

In this review, we describe important mechanisms that are supposed to play a role in a possible interaction between microbiota and brain tumours. We focus on the barriers between gut and peripheral blood and between peripheral blood and brain. With regard to the barrier between gut and peripheral blood, interactions of the intestinal microbiome with the immune phenotype and metabolites in the blood have been described. With regard to the blood-brain-barrier, we discuss possible relations between the peripheral immune phenotype or metabolites in the blood and the immune infiltration in the brain as well as the induction of tumorigenic signaling pathways.

 
  • Literatur

  • 1 Ostrom QT, Gittleman H, Truitt G. et al CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in, 2011–2015. Neuro-Oncology 2018; 20: iv1-iv86 doi:10.1093/neuonc/noy131
  • 2 Ohgaki H, Kleihues P. The definition of primary and secondary glioblastoma. Clinical Cancer Research 2013; 19: 764-72 doi:10.1158/1078-0432.CCR-12-3002
  • 3 Stupp R, Taillibert S, Kanner A. et al Effect of Tumor-Treating Fields Plus Maintenance Temozolomide vs Maintenance Temozolomide Alone on Survival in Patients With Glioblastoma: A Randomized Clinical Trial. JAMA 2017; 318: 2306-16 doi:10.1001/jama.2017.18718
  • 4 Zhuang L, Chen H, Zhang S. et al Intestinal Microbiota in Early Life and Its Implications on Childhood Health. Genomics Proteomics Bioinformatics 2019; 17: 13-25 doi:10.1016/j.gpb.2018.10.002
  • 5 Sochocka M, Donskow-Lysoniewska K, Diniz BS. et al The Gut Microbiome Alterations and Inflammation-Driven Pathogenesis of Alzheimer’s Disease – a Critical Review. Mol Neurobiol 2019; 56: 1841-51 doi:10.1007/s12035-018-1188-4
  • 6 Gareau MG, Wine E, Rodrigues DM. et al Bacterial infection causes stress-induced memory dysfunction in mice. Gut 2011; 60: 307-317 doi:10.1136/gut.2009.202515
  • 7 Bagga D, Reichert JL, Koschutnig K. et al Probiotics drive gut microbiome triggering emotional brain signatures. Gut Microbes 2018; 9: 486-96 doi:10.1080/19490976.2018.1460015
  • 8 MacFabe DF, Cain NE, Boon F. et al Effects of the enteric bacterial metabolic product propionic acid on object-directed behavior, social behavior, cognition, and neuroinflammation in adolescent rats: Relevance to autism spectrum disorder. Behavioural Brain Research 2011; 217: 47-54 doi:10.1016/j.bbr.2010.10.005
  • 9 Cheung SG, Goldenthal AR, Uhlemann AC. et al Systematic Review of Gut Microbiota and Major Depression. Front Psychiatry 2019; 10: 34 doi:10.3389/fpsyt.2019.00034
  • 10 Valles-Colomer M, Falony G, Darzi Y. et al The neuroactive potential of the human gut microbiota in quality of life and depression. Nat Microbiol 2019; 4: 623-32 doi:10.1038/s41564-018-0337-x
  • 11 Breen DP, Halliday GM, Lang AE. Gut-brain axis and the spread of alpha-synuclein pathology: Vagal highway or dead end?. Mov Disord 2019; 34: 307-16 doi:10.1002/mds.27556
  • 12 Lee YK, Menezes JS, Umesaki Y. et al Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proceedings of the National Academy of Sciences of the United States of America 2011; 108 (Suppl. 01) 4615-22 doi:10.1073/pnas.1000082107
  • 13 Erny D, Hrabe de Angelis AL, Jaitin D. et al Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci 2015; 18: 965-77 doi:10.1038/nn.4030
  • 14 Baj A, Moro E, Bistoletti M. et al Glutamatergic Signaling Along The Microbiota-Gut-Brain Axis. Int J Mol Sci 2019 doi:10.3390/ijms20061482
  • 15 Chen GY. The Role of the Gut Microbiome in Colorectal Cancer. Clin Colon Rectal Surg 2018; 31: 192-8 doi:10.1055/s-0037-1602239
  • 16 Castellarin M, Warren RL, Freeman JD. et al Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Research 2012; 22: 299-306 doi:10.1101/gr.126516.111
  • 17 Kostic AD, Chun E, Robertson L. et al Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe 2013; 14: 207-15 doi:10.1016/j.chom.2013.07.007
  • 18 Yang L, Lu X, Nossa CW. et al Inflammation and intestinal metaplasia of the distal esophagus are associated with alterations in the microbiome. Gastroenterology 2009; 137: 588-97 doi:10.1053/j.gastro.2009.04.046
  • 19 Dapito DH, Mencin A, Gwak G-Y. et al Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4. Cancer cell 2012; 21: 504-16 doi:10.1016/j.ccr.2012.02.007
  • 20 Fernández MF, Reina-Pérez I, Astorga JM. et al Breast Cancer and Its Relationship with the Microbiota. Int J Environ Res Public Health 2018 doi:10.3390/ijerph15081747
  • 21 Schwabe RF, Jobin C. The microbiome and cancer. Nature reviews. Cancer 2013; 13: 800-12 doi:10.1038/nrc3610
  • 22 Yoshimoto S, Loo TM, Atarashi K. et al Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature 2013; 499: 97-101 doi:10.1038/nature12347
  • 23 Wu S, Morin PJ, Maouyo D. et al Bacteroides fragilis enterotoxin induces c-Myc expression and cellular proliferation. Gastroenterology 2003; 124: 392-400 doi:10.1053/gast.2003.50047
  • 24 Grivennikov S, Karin E, Terzic J. et al IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer cell 2009; 15: 103-13 doi:10.1016/j.ccr.2009.01.001
  • 25 Rubinstein MR, Wang X, Liu W. et al Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin. Cell Host Microbe 2013; 14: 195-206 doi:10.1016/J.CHOM.2013.07.012
  • 26 Pandiyan P, Bhaskaran N, Zou M. et al Microbiome Dependent Regulation of Tregs and Th17 Cells in Mucosa. Front Immunol 2019; 10: 426 doi:10.3389/fimmu.2019.00426
  • 27 Faith JJ, Ahern PP, Ridaura VK. et al Identifying gut microbe-host phenotype relationships using combinatorial communities in gnotobiotic mice. Science translational medicine 2014; 6: 220ra11 doi:10.1126/scitranslmed.3008051
  • 28 Louveau A, Smirnov I, Keyes TJ. et al Structural and functional features of central nervous system lymphatic vessels. Nature 2015; 523: 337-41 doi:10.1038/nature14432
  • 29 Bartholomäus I, Kawakami N, Odoardi F. et al Effector T cell interactions with meningeal vascular structures in nascent autoimmune CNS lesions. Nature 2009; 462: 94-8 doi:10.1038/nature08478
  • 30 von Hanwehr RI, Hofman FM, Taylor CR. et al Mononuclear lymphoid populations infiltrating the microenvironment of primary CNS tumors. Characterization of cell subsets with monoclonal antibodies. J Neurosurg 1984; 60: 1138-47 doi:10.3171/jns.1984.60.6.1138
  • 31 Atarashi K, Tanoue T, Shima T. et al Induction of colonic regulatory T cells by indigenous Clostridium species. Science 2011; 331: 337-41 doi:10.1126/science.1198469
  • 32 Furusawa Y, Obata Y, Fukuda S. et al Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 2013; 504: 446-50 doi:10.1038/nature12721
  • 33 Pandiyan P, Zheng L, Ishihara S. et al CD4 + CD25 + Foxp3 + regulatory T cells induce cytokine deprivation-mediated apoptosis of effector CD4 + T cells. Nat Immunol 2007; 8: 1353-62 doi:10.1038/ni1536
  • 34 Ivanov II, Atarashi K, Manel N. et al Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 2009; 139: 485-98 doi:10.1016/j.cell.2009.09.033
  • 35 Round JL, Lee SM, Li J. et al The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science 2011; 332: 974-7 doi:10.1126/science.1206095
  • 36 Mazmanian SK, Liu CH, Tzianabos AO. et al An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 2005; 122: 107-18 doi:10.1016/j.cell.2005.05.007
  • 37 Viaud S, Daillere R, Boneca IG. et al Gut microbiome and anticancer immune response: really hot Sh*t! Cell Death Differ. 2015; 22: 199-214 doi:10.1038/cdd.2014.56
  • 38 Schirmer M, Smeekens SP, Vlamakis H. et al Linking the Human Gut Microbiome to Inflammatory Cytokine Production Capacity. Cell 2016; 167: 1125-1136.e8 doi:10.1016/j.cell.2016.10.020
  • 39 Chen Z, Feng X, Herting CJ. et al Cellular and Molecular Identity of Tumor-Associated Macrophages in Glioblastoma. Cancer Research 2017; 77: 2266-78 doi:10.1158/0008-5472.CAN-16-2310
  • 40 Fecci PE, Mitchell DA, Whitesides JF. et al Increased regulatory T-cell fraction amidst a diminished CD4 compartment explains cellular immune defects in patients with malignant glioma. Cancer Res 2006; 66: 3294-302 doi:10.1158/0008-5472.CAN-05-3773
  • 41 Lohr J, Ratliff T, Huppertz A. et al Effector T-cell infiltration positively impacts survival of glioblastoma patients and is impaired by tumor-derived TGF-beta. Clin Cancer Res 2011; 17: 4296-308 doi:10.1158/1078-0432.CCR-10-2557
  • 42 Han S, Ma E, Wang X. et al Rescuing defective tumor-infiltrating T-cell proliferation in glioblastoma patients. Oncology Letters 2016; 12: 2924-9 doi:10.3892/ol.2016.4944
  • 43 Badie B, Schartner JM. Flow cytometric characterization of tumor-associated macrophages in experimental gliomas. Neurosurgery 2000; 46: 957-61 discussion 961–2. doi:10.1097/00006123-200004000-00035
  • 44 Dutoit V, Herold-Mende C, Hilf N. et al Exploiting the glioblastoma peptidome to discover novel tumour-associated antigens for immunotherapy. Brain 2012; 135: 1042-54 doi:10.1093/brain/aws042
  • 45 Beckhove P, Warta R, Lemke B. et al Rapid T cell-based identification of human tumor tissue antigens by automated two-dimensional protein fractionation. J Clin Invest 2010; 120: 2230-42 doi:10.1172/JCI37646
  • 46 Albulescu R, Codrici E, Popescu ID. et al Cytokine patterns in brain tumour progression. Mediators Inflamm 2013; 2013: 979748 doi:10.1155/2013/979748
  • 47 Nijaguna MB, Patil V, Hegde AS. et al An Eighteen Serum Cytokine Signature for Discriminating Glioma from Normal Healthy Individuals. PloS one 2015; 10: e0137524 doi:10.1371/journal.pone.0137524
  • 48 Asseman C, Mauze S, Leach MW. et al An essential role for interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation. J Exp Med 1999; 190: 995-1004 doi:10.1084/jem.190.7.995
  • 49 Nakamura K, Kitani A, Fuss I. et al TGF-beta 1 plays an important role in the mechanism of CD4 + CD25 + regulatory T cell activity in both humans and mice. Journal of immunology 2004; 172: 834-42 doi:10.4049/jimmunol.172.2.834
  • 50 Tai X, van Laethem F, Pobezinsky L. et al Basis of CTLA-4 function in regulatory and conventional CD4(+) T cells. Blood 2012; 119: 5155-63 doi:10.1182/blood-2011-11-388918
  • 51 Crane CA, Ahn BJ, Han SJ. et al Soluble factors secreted by glioblastoma cell lines facilitate recruitment, survival, and expansion of regulatory T cells: implications for immunotherapy. Neuro Oncol 2012; 14: 584-95 doi:10.1093/neuonc/nos014
  • 52 Wainwright DA, Balyasnikova IV, Chang AL. et al IDO expression in brain tumors increases the recruitment of regulatory T cells and negatively impacts survival. Clinical Cancer Research 2012; 18: 6110-21 doi:10.1158/1078-0432.CCR-12-2130
  • 53 Heimberger AB, Abou-Ghazal M, Reina-Ortiz C. et al Incidence and prognostic impact of FoxP3 + regulatory T cells in human gliomas. Clin Cancer Res 2008; 14: 5166-72 doi:10.1158/1078-0432.CCR-08-0320
  • 54 Zou JP, Morford LA, Chougnet C, Dix AR, Brooks AG, Torres N. et al Human glioma-induced immunosuppression involves soluble factor(s) that alters monocyte cytokine profile and surface markers. J Immunol 1999; 162: 4882-92
  • 55 Seliger C, Leukel P, Moeckel S. et al Lactate-modulated induction of THBS-1 activates transforming growth factor (TGF)-beta2 and migration of glioma cells in vitro. PloS one 2013; 8: e78935 doi:10.1371/journal.pone.0078935
  • 56 Silginer M, Burghardt I, Gramatzki D. et al The aryl hydrocarbon receptor links integrin signaling to the TGF-beta pathway. Oncogene 2016; 35: 3260-71 doi:10.1038/onc.2015.387
  • 57 Tanabe K, Matsushima-Nishiwaki R, Yamaguchi S. et al Mechanisms of tumor necrosis factor-alpha-induced interleukin-6 synthesis in glioma cells. J Neuroinflammation 2010; 7: 16 doi:10.1186/1742-2094-7-16
  • 58 Zheng X, Zhou K, Zhang Y. et al Food withdrawal alters the gut microbiota and metabolome in mice. FASEB J 2018; 32: 4878-88 doi:10.1096/fj.201700614R
  • 59 Garnier D, Renoult O, Alves-Guerra M-C. et al Glioblastoma Stem-Like Cells, Metabolic Strategy to Kill a Challenging Target. Front Oncol 2019; 9: 118 doi:10.3389/fonc.2019.00118
  • 60 Kelly CJ, Zheng L, Campbell EL. et al Crosstalk between Microbiota-Derived Short-Chain Fatty Acids and Intestinal Epithelial HIF Augments Tissue Barrier Function. Cell Host Microbe 2015; 17: 662-71 doi:10.1016/j.chom.2015.03.005
  • 61 Arpaia N, Campbell C, Fan X. et al Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 2013; 504: 451-5 doi:10.1038/nature12726
  • 62 Cervenka I, Agudelo LZ, Ruas JL. Kynurenines: Tryptophan’s metabolites in exercise, inflammation, and mental health. Science 2017 doi:10.1126/science.aaf9794
  • 63 Lee JH, Lee J. Indole as an intercellular signal in microbial communities. FEMS Microbiol Rev 2010; 34: 426-44 doi:10.1111/j.1574-6976.2009.00204.x
  • 64 Yano JM, Yu K, Donaldson GP. et al Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 2015; 161: 264-76 doi:10.1016/j.cell.2015.02.047
  • 65 Clarke G, Grenham S, Scully P. et al The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol Psychiatry 2013; 18: 666-73 doi:10.1038/mp.2012.77
  • 66 Desbonnet L, Garrett L, Clarke G. et al The probiotic Bifidobacteria infantis: An assessment of potential antidepressant properties in the rat. Journal of Psychiatric Research 2008; 43: 164-74 doi:10.1016/j.jpsychires.2008.03.009
  • 67 Valladares R, Bojilova L, Potts AH. et al Lactobacillus johnsonii inhibits indoleamine 2,3-dioxygenase and alters tryptophan metabolite levels in BioBreeding rats. FASEB J 2013; 27: 1711-20 doi:10.1096/fj.12-223339
  • 68 Raison CL, Dantzer R, Kelley KW. et al CSF concentrations of brain tryptophan and kynurenines during immune stimulation with IFN-alpha: relationship to CNS immune responses and depression. Mol Psychiatry 2010; 15: 393-403 doi:10.1038/mp.2009.116
  • 69 Wikoff WR, Anfora AT, Liu J. et al Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci U S A 2009; 106: 3698-703 doi:10.1073/pnas.0812874106
  • 70 Opitz CA, Litzenburger UM, Sahm F. et al An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature 2011; 478: 197-203 doi:10.1038/nature10491
  • 71 Pilotte L, Larrieu P, Stroobant V. et al Reversal of tumoral immune resistance by inhibition of tryptophan 2,3-dioxygenase. Proc Natl Acad Sci U S A 2012; 109: 2497-502 doi:10.1073/pnas.1113873109
  • 72 Uyttenhove C, Pilotte L, Theate I. et al Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat Med 2003; 9: 1269-74 doi:10.1038/nm934
  • 73 Fallarino F, Grohmann U, You S. et al The combined effects of tryptophan starvation and tryptophan catabolites down-regulate T cell receptor zeta-chain and induce a regulatory phenotype in naive T cells. J Immunol 2006; 176: 6752-61 doi:10.4049/jimmunol.176.11.6752
  • 74 Favre D, Mold J, Hunt PW. et al Tryptophan catabolism by indoleamine 2,3-dioxygenase 1 alters the balance of TH17 to regulatory T cells in HIV disease. Sci Transl Med 2010; 2: 32ra36 doi:10.1126/scitranslmed.3000632
  • 75 Frumento G, Rotondo R, Tonetti M. et al Tryptophan-derived catabolites are responsible for inhibition of T and natural killer cell proliferation induced by indoleamine 2,3-dioxygenase. J Exp Med 2002; 196: 459-68 doi:10.1084/jem.20020121
  • 76 Fallarino F, Grohmann U, Vacca C. et al T cell apoptosis by tryptophan catabolism. Cell Death Differ 2002; 9: 1069-77 doi:10.1038/sj.cdd.4401073
  • 77 Mezrich JD, Fechner JH, Zhang X. et al An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory T cells. J Immunol 2010; 185: 3190-8 doi:10.4049/jimmunol.0903670
  • 78 Rothhammer V, Mascanfroni ID, Bunse L. et al Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor. Nat Med 2016; 22: 586-97 doi:10.1038/nm.4106
  • 79 Quintana FJ, Basso AS, Iglesias AH. et al Control of T(reg) and T(H)17 cell differentiation by the aryl hydrocarbon receptor. Nature 2008; 453: 65-71 doi:10.1038/nature06880
  • 80 Opitz CA, Litzenburger UM, Opitz U. et al The indoleamine-2,3-dioxygenase (IDO) inhibitor 1-methyl-D-tryptophan upregulates IDO1 in human cancer cells. PloS one 2011; 6: e19823 doi:10.1371/journal.pone.0019823
  • 81 Vezzani A, Gramsbergen JB, Speciale C. et al Production of quinolinic acid and kynurenic acid by human glioma. Adv Exp Med Biol 1991; 294: 691-5 doi:10.1007/978-1-4684-5952-4_95
  • 82 Alberati-Giani D, Ricciardi-Castagnoli P, Köhler C. et al Regulation of the kynurenine metabolic pathway by interferon-gamma in murine cloned macrophages and microglial cells. J Neurochem 1996; 66: 996-1004 doi:10.1046/j.1471-4159.1996.66030996.x
  • 83 D’Amato NC, Rogers TJ, Gordon MA. et al A TDO2-AhR signaling axis facilitates anoikis resistance and metastasis in triple-negative breast cancer. Cancer Res 2015; 75: 4651-64 doi:10.1158/0008-5472.CAN-15-2011
  • 84 McCord M, Mukouyama YS, Gilbert MR. et al Targeting WNT Signaling for Multifaceted Glioblastoma Therapy. Front Cell Neurosci 2017; 11: 318 doi:10.3389/fncel.2017.00318
  • 85 Carro MS, Lim WK, Alvarez MJ. et al The transcriptional network for mesenchymal transformation of brain tumours. Nature 2010; 463: 318-25 doi:10.1038/nature08712
  • 86 West AJ, Tsui V, Stylli SS. et al The role of interleukin-6-STAT3 signalling in glioblastoma. Oncol Lett 2018; 16: 4095-104 doi:10.3892/ol.2018.9227
  • 87 Ferguson SD, Srinivasan VM, Heimberger AB. The role of STAT3 in tumor-mediated immune suppression. J Neurooncol 2015; 123: 385-94 doi:10.1007/s11060-015-1731-3
  • 88 Leidgens V, Seliger C, Jachnik B. et al Ibuprofen and Diclofenac Restrict Migration and Proliferation of Human Glioma Cells by Distinct Molecular Mechanisms. PloS one 2015; 10: e0140613 doi:10.1371/journal.pone.0140613
  • 89 Yamini B. NF-kappaB, Mesenchymal Differentiation and Glioblastoma. Cells 2018 doi:10.3390/cells7090125
  • 90 Gray GK, McFarland BC, Nozell SE. et al NF-kappaB and STAT3 in glioblastoma: therapeutic targets coming of age. Expert Rev Neurother 2014; 14: 1293-306 doi:10.1586/14737175.2014.964211
  • 91 Monsalve FA, Pyarasani RD, Delgado-Lopez F. et al Peroxisome proliferator-activated receptor targets for the treatment of metabolic diseases. Mediators Inflamm 2013; 2013: 549627 doi:10.1155/2013/549627
  • 92 Ellis HP, Kurian KM. Biological Rationale for the Use of PPARgamma Agonists in Glioblastoma. Front Oncol 2014; 4: 52 doi:10.3389/fonc.2014.00052
  • 93 Grommes C, Conway DS, Alshekhlee A. et al Inverse association of PPARgamma agonists use and high grade glioma development. J Neurooncol 2010; 100: 233-9 doi:10.1007/s11060-010-0185-x
  • 94 Maleki Vareki S, Rytelewski M, Figueredo R. et al Indoleamine 2,3-dioxygenase mediates immune-independent human tumor cell resistance to olaparib, gamma radiation, and cisplatin. Oncotarget 2014; 5: 2778-91 doi:10.18632/oncotarget.1916
  • 95 Fulda S, Kogel D. Cell death by autophagy: emerging molecular mechanisms and implications for cancer therapy. Oncogene 2015; 34: 5105-13 doi:10.1038/onc.2014.458
  • 96 Joseph JV, Conroy S, Tomar T. et al TGF-β is an inducer of ZEB1-dependent mesenchymal transdifferentiation in glioblastoma that is associated with tumor invasion. Cell Death & Disease 2014; 5: e1443 doi:10.1038/cddis.2014.395
  • 97 Bhat KPL, Balasubramaniyan V, Vaillant B. et al Mesenchymal differentiation mediated by NF-κB promotes radiation resistance in glioblastoma. Cancer cell 2013; 24: 331-346 doi:10.1016/j.ccr.2013.08.001
  • 98 Rutledge WC, Kong J, Gao J. et al Tumor-Infiltrating Lymphocytes in Glioblastoma Are Associated with Specific Genomic Alterations and Related to Transcriptional Class. Clinical Cancer Research 2013; 19: 4951-4960 doi:10.1158/1078-0432.CCR-13-0551