Subscribe to RSS
DOI: 10.1055/a-1070-9325
Protective Effects of Bergamot (Citrus bergamia Risso & Poiteau) Juice in Rats Fed with High-Fat Diet
Supported by: Università di Pisa Grant no. PRA_2017_26Publication History
received 18 September 2019
revised 18 November 2019
accepted 21 November 2019
Publication Date:
11 December 2019 (online)
Abstract
The bergamot (Citrus bergamia Risso & Poiteau), a small tree cultivated along the Ionian coast of the Calabria region in Southern Italy, is an ancient plant used for the production of essential oil from fruit peel, but recently evaluated also for the high content of phenolics in the fruit pulp. Indeed, the juice is rich in glycosylated flavone and flavanones, showing a wide range of pharmacological activities. Noteworthy preclinical and clinical studies reported that bergamot juice is effective in reducing plasma lipids. The aim of this study was to evaluate the beneficial effects of a C. bergamia juice using an experimental animal model of metabolic syndrome and cardiovascular risk in vivo. A significant reduction of both triglyceride levels and cardiovascular risk was observed in animals fed with a high-fat diet and bergamot juice. Daily oral treatment with bergamot juice significantly limits a high-fat-induced increase in body, visceral adipose tissue, liver, and heart weight. In addition, C. bergamia juice showed protective effects on hepatic steatosis, probably due to the reduction of oxidative stress and inflammation. Chemical constituents of administered bergamot juice, investigated by means of liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) analyses were represented by a wide range of flavonoids, with neohesperidin, neoeriocitrin, and naringin being the most abundant flavonoids according to previous studies. Furthermore, a considerable amount of brutieridin, a flavanone O-glycoside having a 3-hydroxy-3-methyl-glutaryl residue, was observed.
-
References
- 1 Rapisarda A, Germanò MP. Citrus × bergamia Risso & Poiteau. Botanical Classification, Morphology, and Anatomy. In: Dugo G, Bonaccorsi I. eds. Citrus bergamia. Bergamot and its Derivatives. Boca Raton: CRC Press; 2013: 9-24
- 2 Federici CT, Roose ML, Scora RW. RFLP analysis of the origin of Citrus bergamia, Citrus jambhiri, and Citrus limonia . Acta Hortic 2000; 535: 55-64
- 3 Guazzelli L, Catelani G, DʼAndrea F. Lactose as an inexpensive starting material for the preparation of aldohexos-5-uloses: synthesis of l-ribo and d-lyxo derivatives. Carbohydr Res 2010; 345: 369-376
- 4 Kowalska H, Czajkowska K, Cichowska J, Lenart A. Whatʼs new in biopotential of fruit and vegetable by-products applied in the food processing industry. Trends Food Sci Tech 2017; 67: 150-159
- 5 Iriondo-DeHond M, Miguel E, Del Castillo MD. Food byproducts as sustainable ingredients for innovative and healthy dairy foods. Nutrients 2018; 10: E1358
- 6 Gattuso G, Barreca D, Caristi C, Gargiulli C, Leuzzi U. Distribution of flavonoids and furocoumarins in juices from cultivars of Citrus bergamia Risso. J Agr Food Chem 2007; 55: 9921-9927
- 7 Russo M, Arigò A, Calabrò ML, Farnetti S, Mondello L, Dugo P. Bergamot (Citrus bergamia Risso) as a source of nutraceuticals: limonoids and flavonoids. J Funct Food 2016; 20: 10-19
- 8 Da Pozzo E, De Leo M, Faraone I, Milella L, Cavallini C, Piragine E, Testai L, Calderone V, Pistelli L, Braca A, Martini C. Antioxidant and antisenescence effects of bergamot juice. Oxid Med Cell Longev 2018; 2018: 9395804
- 9 Formisano C, Rigano D, Lopatriello A, Sirignano C, Ramaschi G, Arnoldi L, Riva A, Sardone N, Taglialatela-Scafati O. Detailed phytochemical characterization of bergamot polyphenolic fraction (BPF) by UPLC-DAD-MS and LC-NMR. J Agric Food Chem 2019; 67: 3159-3167
- 10 Mollace V, Sacco I, Janda E, Malara C, Ventrice D, Colica C, Visalli V, Muscoli S, Ragusa S, Muscoli C, Rotiroti D, Romeo F. Hypolipemic and hypoglycemic activity of bergamot polyphenols: from animal models to human studies. Fitoterapia 2011; 82: 309-316
- 11 Giglio RV, Patti AM, Nikolic D, Li Volti G, Al-Rasadi K, Katsiki N, Mikhailidis DP, Montalto G, Ivanova E, Orekhov AN, Rizzo M. The effect of bergamot on dyslipidemia. Phytomedicine 2016; 23: 1175-1181
- 12 Cai Y, Xing G, Shen T, Zhang S, Rao J, Sho R. Effects of 12-wk supplementation of Citrus bergamia extracts-based formulation CitriCholess on cholesterol and body weight in older adults with dyslipidemia: a randomized, double-blind, placebo-controlled trial. Lipids Health Dis 2017; 16: 251
- 13 Sicari V, Pellicanò TM. Phytochemical properties and antioxidant potential from Citrus bergamia, Risso (bergamot) juice extracted from three different cultivars. J Appl Bot Food Qual 2016; 89: 171-175
- 14 Risitano R, Curro M, Cirmi S, Ferlazzo N, Campiglia P, Caccamo D, Ientile R, Navarra M. Flavonoid fraction of bergamot juice reduces LPS-induced inflammatory response through SIRT1-mediated NF-κB inhibition in THP-1 monocytes. PLoS One 2014; 9: e107431
- 15 Sommella E, Pepe G, Pagano F, Tenore GC, Marzocco S, Manfra M, Calabrese G, Aquino PR, Campiglia P. UHPLC profiling and effects on LPS-stimulated J774A. 1 macrophages of flavonoids from bergamot (Citrus bergamia) juice, an underestimated waste product with high anti-inflammatory potential. J Funct Foods 2014; 7: 641-649
- 16 Impellizzeri D, Bruschetta G, Di Paola R, Ahmad A, Campolo M, Cuzzocrea S, Esposito E, Navarra M. The anti-inflammatory and antioxidant effects of bergamot juice extract (BJe) in an experimental model of inflammatory bowel disease. Clin Nutr 2015; 34: 1146-1154
- 17 Sicari V, Loizzo MR, Branca V, Pellicanò TM. Bioactive and antioxidant activity from Citrus bergamia Risso (Bergamot) juice collected in different areas of Reggio Calabria province, Italy. Int J Food Prop 2016; 19: 1962-1971
- 18 Parafati M, Lascala A, La Russa D, Mignogna C, Trimboli F, Morittu VM, Riillo C, Macirella R, Mollace V, Brunelli E, Ganda E. Bergamot polyphenols boost therapeutic effects of the diet on non-alcoholic steatohepatitis (NASH) induced by “Junk Food”: evidence for anti-inflammatory activity. Nutrients 2018; 10: E1604
- 19 Testai L, Da Pozzo E, Piano I, Pistelli L, Gargini C, Breschi MC, Braca A, Martini C, Martelli A, Calderone V. The Citrus flavanone naringenin produces cardioprotective effects in hearts from 1 yr old rat, through activation of mitoBK channels. Front Pharmacol 2017; 8: 71
- 20 Da Pozzo E, Costa B, Cavallini C, Testai L, Martelli A, Calderone V, Martini C. The Citrus flavanone naringenin protects myocardial cells against age-associated damage. Oxid Med Cell Longev 2017; 2017: 9536148
- 21 Flamini G, Pistelli L, Nardoni S, Ebani VV, Zinnai A, Mancianti F, Ascrizzi R, Pistelli L. Essential oil composition and biological activity of “Pompia”, a Sardinian Citrus ecotype. Molecules 2019; 24: E908
- 22 Camero CM, Vassallo A, De Leo M, Temraz A, De Tommasi N, Braca A. Limonoids from Aphanamixis polystachya leaves and their interaction with Hsp90. Planta Med 2018; 84: 964-970
- 23 Miceli N, Mondello MR, Monforte MT, Sdrafkakis V, Dugo P, Crupi ML, Taviano MF, De Pasquale R, Trovato A. Hypolipidemic effects of Citrus bergamia Risso et Poiteau juice in rats fed a hypercholesterolemic diet. J Agric Food Chem 2007; 55: 10671-10677
- 24 Di Donna L, Iacopetta D, Cappello AR, Gallucci G, Martello E, Fiorillo M, Dolce V, Sindona G. Hypocholesterolemic activity of 3-hydroxy-3-methyl-glutaryl flavanones enriched fraction from bergamot fruit (Citrus bergamia): “In vivo” studies. J Funct Foods 2014; 7: 558-568
- 25 Mollace V, Scicchitano M, Paone S, Casale F, Calandruccio C, Gliozzi M, Musolino V, Carresi C, Maiuolo J, Nucera S, Riva A, Allegrini P, Ronchi M, Petrangolini G, Bombardelli E. Hypoglycemic and hypolipemic effects of a new lecithin formulation of bergamot polyphenolic fraction: A double blind, randomized, placebo-controlled study. Endocr Metab Immune Disord Drug Targets 2019; 19: 136-143
- 26 Buettner R, Schölmerich J, Bollheimer LC. High-fat diets: modeling the metabolic disorders of human obesity in rodents. Obesity (Silver Spring) 2007; 15: 798-808
- 27 Han Q, Yeung SC, Ip MSM, Mak JCW. Dysregulation of cardiac lipid parameters in high-fat high-cholesterol diet-induced rat model. Lipids Health Dis 2018; 17: 255
- 28 Poret JM, Souza-Smith F, Marcell SJ, Gaudet DA, Tzeng TH, Braymer D, Harrison-Bernard LM, Primeaux SD. High fat diet consumption differentially affects adipose tissue inflammation and adipocyte size in obesity-prone and obesity-resistant rats. Int J Obes (Lond) 2018; 42: 535-541
- 29 Terra X, Montagut G, Bustos M, Llopiz N, Ardèvol A, Bladé C, Fernández-Larrea J, Pujadas G, Salvadó J, Arola L, Blay M. Grape-seed procyanidins prevent low-grade inflammation by modulating cytokine expression in rats fed a high-fat diet. J Nutr Biochem 2009; 20: 210-218
- 30 Song L, Qu D, Zhang Q, Jiang J, Zhou H, Jiang R, Li Y, Zhang Y, Yan H. Phytosterol esters attenuate hepatic steatosis in rats with non-alcoholic fatty liver disease rats fed a high-fat diet. Sci Rep 2017; 7: 41604
- 31 Duan Y, Zeng L, Zheng C, Song B, Li F, Kong X, Xu K. Inflammatory links between high fat diets and diseases. Front Immunol 2018; 9: 2649
- 32 Perna S, Spadaccini D, Botteri L, Girometta C, Riva A, Allegrini P, Petrangolini G, Infantino V, Rondanelli M. Efficacy of bergamot: from anti-inflammatory and anti-oxidative mechanisms to clinical applications as preventive agent for cardiovascular morbidity, skin diseases, and mood alterations. Food Sci Nutr 2019; 7: 369-384
- 33 Meli R, Mattace Raso G, Irace C, Simeoli R, Di Pascale A, Paciello O, Pagano TB, Calignano A, Colonna A, Santamaria R. High fat diet induces liver steatosis and early dysregulation of iron metabolism in rats. PLoS One 2013; 8: e66570
- 34 Echeverría F, Valenzuela R, Bustamante A, Álvarez D, Ortiz M, Soto-Alarcon SA, Muñoz P, Corbari A, Videla LA. Attenuation of high-fat diet-induced rat liver oxidative stress and steatosis by combined hydroxytyrosol- (HT-) eicosapentaenoic acid supplementation mainly relies on HT. Oxid Med Cell Longev 2018; 2018: 5109503
- 35 Napoli C, Martin-Padura I, de Nigris F, Giorgio M, Mansueto G, Somma P, Condorelli M, Sica G, De Rosa G, Pelicci PG. Deletion of the p66Shc longevity gene reduces systemic and tissue oxidative stress, vascular cell apoptosis, and early atherogenesis in mice fed a high-fat diet. Proc Natl Acad Sci U S A 2003; 100: 2112-2116
- 36 Kopelman PG. Obesity as a medical problem. Nature 2000; 404: 635-643
- 37 Williamson RM, Price JF, Glancy S, Perry E, Nee LD, Hayes PC, Frier BM, Van Look LA, Johnston GI, Reynolds RM, Strachan MW. Edinburgh Type 2 Diabetes Study Investigators. Prevalence of and risk factors for hepatic steatosis and nonalcoholic fatty liver disease in people with type 2 diabetes: the Edinburgh Type 2 Diabetes Study. Diabetes Care 2011; 34: 1139-1144
- 38 Cheng K, Song Z, Zhang H, Li S, Wang C, Zhang L, Wang T. The therapeutic effects of resveratrol on hepatic steatosis in high-fat diet-induced obese mice by improving oxidative stress, inflammation and lipid-related gene transcriptional expression. Med Mol Morphol 2019;
- 39 McGrath JC, Lilley E. Implementing guidelines on reporting research using animals (ARRIVE etc.): new requirements for publication in BJP. Br J Pharmacol 2015; 172: 3189-3193
- 40 Lobenhofer EK, Boorman GA, Phillips KL, Heinloth AN, Malarkey DE, Blackshear PE, Houle C, Hurban P. Application of visualization tools to the analysis of histopathological data enhances biological insight and interpretation. Toxicol Pathol 2006; 34: 921-928
- 41 Testai L, Marino A, Piano I, Brancaleone V, Tomita K, Di Cesare Mannelli L, Martelli A, Citi V, Breschi MC, Levi R, Gargini C, Bucci M, Cirino G, Ghelardini C, Calderone V. The novel H2S-donor 4-carboxyphenyl isothiocyanate promotes cardioprotective effects against ischemia/reperfusion injury through activation of mitoKATP channels and reduction of oxidative stress. Pharm Res 2016; 113: 290-299